@@ -188,7 +188,7 @@ def plot_posterior_comparison(ns_results: RAT.outputs.BayesResults, calc_results
188188 num_params = calc_results .distribution .ndim
189189 fig , axes = plt .subplots (2 , num_params )
190190
191- def plot_marginalised_result (dimension : int , axes : plt .Axes ):
191+ def plot_marginalised_result (dimension : int , axes : plt .Axes , limits : tuple [ float ] ):
192192 """Plot a histogram of a marginalised posterior from the calculation results.
193193
194194 Parameters
@@ -197,6 +197,8 @@ def plot_marginalised_result(dimension: int, axes: plt.Axes):
197197 The dimension of the array to marginalise over.
198198 axes : plt.Axes
199199 The Axes object to plot the histogram onto.
200+ limits : tuple[float]
201+ The x-axis limits for the histogram.
200202
201203 """
202204 # marginalise to the dimension
@@ -207,9 +209,10 @@ def plot_marginalised_result(dimension: int, axes: plt.Axes):
207209 # create histogram
208210 axes .hist (
209211 calc_results .x_data [i ],
212+ bins = 25 ,
213+ range = limits ,
210214 weights = distribution ,
211215 density = True ,
212- bins = 25 ,
213216 edgecolor = "black" ,
214217 linewidth = 1.2 ,
215218 color = "white" ,
@@ -219,8 +222,7 @@ def plot_marginalised_result(dimension: int, axes: plt.Axes):
219222 # row 1 contains direct calculation histograms for each parameter
220223 for i in range (0 , num_params ):
221224 RATplot .plot_one_hist (ns_results , i , smooth = False , axes = axes [0 ][i ])
222- plot_marginalised_result (i , axes [1 ][i ])
223- axes [1 ][i ].set_xlim (* axes [0 ][i ].get_xlim ())
225+ plot_marginalised_result (i , axes [1 ][i ], limits = axes [0 ][i ].get_xlim ())
224226
225227 axes [0 ][0 ].set_ylabel ("nested sampler" )
226228 axes [1 ][0 ].set_ylabel ("direct calculation" )
@@ -234,5 +236,5 @@ def plot_marginalised_result(dimension: int, axes: plt.Axes):
234236 ns_3d , calc_3d = bayes_benchmark_3d (40 )
235237
236238 plot_posterior_comparison (ns_2d , calc_2d )
237-
239+
238240 plot_posterior_comparison (ns_3d , calc_3d )
0 commit comments