Skip to content

Commit 4709dae

Browse files
Merge pull request #783 from Quantum-Software-Development/FabianaCampanari-patch-1
Add files via upload
2 parents da16a80 + 02e5908 commit 4709dae

File tree

1 file changed

+205
-0
lines changed
  • class__15-✍🏻 HandMade Excercise prep EXAM -LP -MathModels - Simplex Two-Stages + Transportation Problem/🇺🇸 Answers - English/Exercise_2-Answers

1 file changed

+205
-0
lines changed
Lines changed: 205 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,205 @@
1+
2+
```markdown
3+
# 🚚 Transportation Problem Solution — Minimum Cost Method
4+
5+
## 📋 Problem Statement
6+
7+
Consider the transportation network given by the table below and determine the optimal transportation cost, starting the resolution using the Minimum Cost Method.
8+
9+
---
10+
11+
## 🧩 Problem Data
12+
13+
### Supplies (Sources)
14+
15+
| Source | Supply |
16+
|--------|--------|
17+
| S1 | 100 |
18+
| S2 | 800 |
19+
| S3 | 150 |
20+
| S4 | 400 |
21+
22+
### Demands (Destinations)
23+
24+
| Market | Demand |
25+
|--------|--------|
26+
| M1 | 700 |
27+
| M2 | 250 |
28+
| M3 | 500 |
29+
30+
### Transportation Costs
31+
32+
| | M1 | M2 | M3 |
33+
|--------|----|----|----|
34+
| **S1** | 5 | 2 | 8 |
35+
| **S2** | 6 | 3 | 7 |
36+
| **S3** | 4 | 3 | 6 |
37+
| **S4** | 8 | 6 | 4 |
38+
39+
---
40+
41+
## 📝 Step 1: Check for Balance
42+
43+
- Total supply: \(100 + 800 + 150 + 400 = 1450\)
44+
- Total demand: \(700 + 250 + 500 = 1450\)
45+
46+
**Since supply equals demand, the problem is balanced.**
47+
48+
---
49+
50+
## 📝 Step 2: Minimum Cost Method
51+
52+
At each step, select the cell with the lowest available cost and allocate the maximum possible amount, updating supplies and demands accordingly.
53+
54+
---
55+
56+
### 🔢 Iteration 1
57+
58+
- **Lowest cost:** 2 (S1 → M2)
59+
- Supply S1: 100 | Demand M2: 250
60+
- **Allocation:** \(x_{12} = 100\)
61+
62+
Table after allocation:
63+
64+
| | M1 | M2 | M3 | Remaining Supply |
65+
|--------|----|----|----|------------------|
66+
| **S1** | |100 | | 0 |
67+
| **S2** | | | | 800 |
68+
| **S3** | | | | 150 |
69+
| **S4** | | | | 400 |
70+
| **Remaining Demand** | 700 | 150 | 500 | |
71+
72+
---
73+
74+
### 🔢 Iteration 2
75+
76+
- **Next lowest cost:** 3 (S2 → M2)
77+
- Supply S2: 800 | Demand M2: 150
78+
- **Allocation:** \(x_{22} = 150\)
79+
80+
Table after allocation:
81+
82+
| | M1 | M2 | M3 | Remaining Supply |
83+
|--------|----|----|----|------------------|
84+
| **S1** | |100 | | 0 |
85+
| **S2** | |150 | | 650 |
86+
| **S3** | | | | 150 |
87+
| **S4** | | | | 400 |
88+
| **Remaining Demand** | 700 | 0 | 500 | |
89+
90+
---
91+
92+
### 🔢 Iteration 3
93+
94+
- **Next lowest cost:** 4 (S3 → M1)
95+
- Supply S3: 150 | Demand M1: 700
96+
- **Allocation:** \(x_{31} = 150\)
97+
98+
Table after allocation:
99+
100+
| | M1 | M2 | M3 | Remaining Supply |
101+
|--------|----|----|----|------------------|
102+
| **S1** | |100 | | 0 |
103+
| **S2** | |150 | | 650 |
104+
| **S3** |150 | | | 0 |
105+
| **S4** | | | | 400 |
106+
| **Remaining Demand** | 550 | 0 | 500 | |
107+
108+
---
109+
110+
### 🔢 Iteration 4
111+
112+
- **Next lowest cost:** 4 (S4 → M3)
113+
- Supply S4: 400 | Demand M3: 500
114+
- **Allocation:** \(x_{43} = 400\)
115+
116+
Table after allocation:
117+
118+
| | M1 | M2 | M3 | Remaining Supply |
119+
|--------|----|----|----|------------------|
120+
| **S1** | |100 | | 0 |
121+
| **S2** | |150 | | 650 |
122+
| **S3** |150 | | | 0 |
123+
| **S4** | | |400 | 0 |
124+
| **Remaining Demand** | 550 | 0 | 100 | |
125+
126+
---
127+
128+
### 🔢 Iteration 5
129+
130+
- **Next lowest cost:** 6 (S2 → M1)
131+
- Supply S2: 650 | Demand M1: 550
132+
- **Allocation:** \(x_{21} = 550\)
133+
134+
Table after allocation:
135+
136+
| | M1 | M2 | M3 | Remaining Supply |
137+
|--------|----|----|----|------------------|
138+
| **S1** | |100 | | 0 |
139+
| **S2** |550 |150 | | 100 |
140+
| **S3** |150 | | | 0 |
141+
| **S4** | | |400 | 0 |
142+
| **Remaining Demand** | 0 | 0 | 100 | |
143+
144+
---
145+
146+
### 🔢 Iteration 6
147+
148+
- **Next lowest cost:** 7 (S2 → M3)
149+
- Supply S2: 100 | Demand M3: 100
150+
- **Allocation:** \(x_{23} = 100\)
151+
152+
Final table:
153+
154+
| | M1 | M2 | M3 | Remaining Supply |
155+
|--------|-----|-----|-----|------------------|
156+
| **S1** | | 100 | | 0 |
157+
| **S2** | 550 | 150 | 100 | 0 |
158+
| **S3** | 150 | | | 0 |
159+
| **S4** | | | 400 | 0 |
160+
| **Remaining Demand** | 0 | 0 | 0 | |
161+
162+
---
163+
164+
## 📊 Final Allocation Table
165+
166+
| | M1 | M2 | M3 | Supply |
167+
|--------|-----|-----|-----|--------|
168+
| **S1** | - | 100 | - | 100 |
169+
| **S2** | 550 | 150 | 100 | 800 |
170+
| **S3** | 150 | - | - | 150 |
171+
| **S4** | - | - | 400 | 400 |
172+
| **Demand** | 700 | 250 | 500 | |
173+
174+
---
175+
176+
## 🧮 Total Cost Calculation
177+
178+
\[
179+
\begin{align*}
180+
Z &= (100 \times 2) + (150 \times 3) + (550 \times 6) + (100 \times 7) + (150 \times 4) + (400 \times 4) \\
181+
&= 200 + 450 + 3300 + 700 + 600 + 1600 \\
182+
&= \boxed{6850}
183+
\end{align*}
184+
\]
185+
186+
---
187+
188+
## ✅ Final Answer
189+
190+
The minimum transportation cost, using the Minimum Cost Method, is:
191+
192+
\[
193+
\boxed{Z = 6850}
194+
\]
195+
196+
---
197+
198+
## 🖋️ Note
199+
200+
The Minimum Cost Method provides a feasible initial solution but does not guarantee optimality.
201+
To verify optimality, it is recommended to apply methods such as:
202+
- **MODI Method (Modified Distribution Method)**
203+
- **Stepping Stone Method**
204+
```
205+

0 commit comments

Comments
 (0)