|
| 1 | + |
| 2 | +```markdown |
| 3 | +# 🚚 Transportation Problem Solution — Minimum Cost Method |
| 4 | + |
| 5 | +## 📋 Problem Statement |
| 6 | + |
| 7 | +Consider the transportation network given by the table below and determine the optimal transportation cost, starting the resolution using the Minimum Cost Method. |
| 8 | + |
| 9 | +--- |
| 10 | + |
| 11 | +## 🧩 Problem Data |
| 12 | + |
| 13 | +### Supplies (Sources) |
| 14 | + |
| 15 | +| Source | Supply | |
| 16 | +|--------|--------| |
| 17 | +| S1 | 100 | |
| 18 | +| S2 | 800 | |
| 19 | +| S3 | 150 | |
| 20 | +| S4 | 400 | |
| 21 | + |
| 22 | +### Demands (Destinations) |
| 23 | + |
| 24 | +| Market | Demand | |
| 25 | +|--------|--------| |
| 26 | +| M1 | 700 | |
| 27 | +| M2 | 250 | |
| 28 | +| M3 | 500 | |
| 29 | + |
| 30 | +### Transportation Costs |
| 31 | + |
| 32 | +| | M1 | M2 | M3 | |
| 33 | +|--------|----|----|----| |
| 34 | +| **S1** | 5 | 2 | 8 | |
| 35 | +| **S2** | 6 | 3 | 7 | |
| 36 | +| **S3** | 4 | 3 | 6 | |
| 37 | +| **S4** | 8 | 6 | 4 | |
| 38 | + |
| 39 | +--- |
| 40 | + |
| 41 | +## 📝 Step 1: Check for Balance |
| 42 | + |
| 43 | +- Total supply: \(100 + 800 + 150 + 400 = 1450\) |
| 44 | +- Total demand: \(700 + 250 + 500 = 1450\) |
| 45 | + |
| 46 | +**Since supply equals demand, the problem is balanced.** |
| 47 | + |
| 48 | +--- |
| 49 | + |
| 50 | +## 📝 Step 2: Minimum Cost Method |
| 51 | + |
| 52 | +At each step, select the cell with the lowest available cost and allocate the maximum possible amount, updating supplies and demands accordingly. |
| 53 | + |
| 54 | +--- |
| 55 | + |
| 56 | +### 🔢 Iteration 1 |
| 57 | + |
| 58 | +- **Lowest cost:** 2 (S1 → M2) |
| 59 | +- Supply S1: 100 | Demand M2: 250 |
| 60 | +- **Allocation:** \(x_{12} = 100\) |
| 61 | + |
| 62 | +Table after allocation: |
| 63 | + |
| 64 | +| | M1 | M2 | M3 | Remaining Supply | |
| 65 | +|--------|----|----|----|------------------| |
| 66 | +| **S1** | |100 | | 0 | |
| 67 | +| **S2** | | | | 800 | |
| 68 | +| **S3** | | | | 150 | |
| 69 | +| **S4** | | | | 400 | |
| 70 | +| **Remaining Demand** | 700 | 150 | 500 | | |
| 71 | + |
| 72 | +--- |
| 73 | + |
| 74 | +### 🔢 Iteration 2 |
| 75 | + |
| 76 | +- **Next lowest cost:** 3 (S2 → M2) |
| 77 | +- Supply S2: 800 | Demand M2: 150 |
| 78 | +- **Allocation:** \(x_{22} = 150\) |
| 79 | + |
| 80 | +Table after allocation: |
| 81 | + |
| 82 | +| | M1 | M2 | M3 | Remaining Supply | |
| 83 | +|--------|----|----|----|------------------| |
| 84 | +| **S1** | |100 | | 0 | |
| 85 | +| **S2** | |150 | | 650 | |
| 86 | +| **S3** | | | | 150 | |
| 87 | +| **S4** | | | | 400 | |
| 88 | +| **Remaining Demand** | 700 | 0 | 500 | | |
| 89 | + |
| 90 | +--- |
| 91 | + |
| 92 | +### 🔢 Iteration 3 |
| 93 | + |
| 94 | +- **Next lowest cost:** 4 (S3 → M1) |
| 95 | +- Supply S3: 150 | Demand M1: 700 |
| 96 | +- **Allocation:** \(x_{31} = 150\) |
| 97 | + |
| 98 | +Table after allocation: |
| 99 | + |
| 100 | +| | M1 | M2 | M3 | Remaining Supply | |
| 101 | +|--------|----|----|----|------------------| |
| 102 | +| **S1** | |100 | | 0 | |
| 103 | +| **S2** | |150 | | 650 | |
| 104 | +| **S3** |150 | | | 0 | |
| 105 | +| **S4** | | | | 400 | |
| 106 | +| **Remaining Demand** | 550 | 0 | 500 | | |
| 107 | + |
| 108 | +--- |
| 109 | + |
| 110 | +### 🔢 Iteration 4 |
| 111 | + |
| 112 | +- **Next lowest cost:** 4 (S4 → M3) |
| 113 | +- Supply S4: 400 | Demand M3: 500 |
| 114 | +- **Allocation:** \(x_{43} = 400\) |
| 115 | + |
| 116 | +Table after allocation: |
| 117 | + |
| 118 | +| | M1 | M2 | M3 | Remaining Supply | |
| 119 | +|--------|----|----|----|------------------| |
| 120 | +| **S1** | |100 | | 0 | |
| 121 | +| **S2** | |150 | | 650 | |
| 122 | +| **S3** |150 | | | 0 | |
| 123 | +| **S4** | | |400 | 0 | |
| 124 | +| **Remaining Demand** | 550 | 0 | 100 | | |
| 125 | + |
| 126 | +--- |
| 127 | + |
| 128 | +### 🔢 Iteration 5 |
| 129 | + |
| 130 | +- **Next lowest cost:** 6 (S2 → M1) |
| 131 | +- Supply S2: 650 | Demand M1: 550 |
| 132 | +- **Allocation:** \(x_{21} = 550\) |
| 133 | + |
| 134 | +Table after allocation: |
| 135 | + |
| 136 | +| | M1 | M2 | M3 | Remaining Supply | |
| 137 | +|--------|----|----|----|------------------| |
| 138 | +| **S1** | |100 | | 0 | |
| 139 | +| **S2** |550 |150 | | 100 | |
| 140 | +| **S3** |150 | | | 0 | |
| 141 | +| **S4** | | |400 | 0 | |
| 142 | +| **Remaining Demand** | 0 | 0 | 100 | | |
| 143 | + |
| 144 | +--- |
| 145 | + |
| 146 | +### 🔢 Iteration 6 |
| 147 | + |
| 148 | +- **Next lowest cost:** 7 (S2 → M3) |
| 149 | +- Supply S2: 100 | Demand M3: 100 |
| 150 | +- **Allocation:** \(x_{23} = 100\) |
| 151 | + |
| 152 | +Final table: |
| 153 | + |
| 154 | +| | M1 | M2 | M3 | Remaining Supply | |
| 155 | +|--------|-----|-----|-----|------------------| |
| 156 | +| **S1** | | 100 | | 0 | |
| 157 | +| **S2** | 550 | 150 | 100 | 0 | |
| 158 | +| **S3** | 150 | | | 0 | |
| 159 | +| **S4** | | | 400 | 0 | |
| 160 | +| **Remaining Demand** | 0 | 0 | 0 | | |
| 161 | + |
| 162 | +--- |
| 163 | + |
| 164 | +## 📊 Final Allocation Table |
| 165 | + |
| 166 | +| | M1 | M2 | M3 | Supply | |
| 167 | +|--------|-----|-----|-----|--------| |
| 168 | +| **S1** | - | 100 | - | 100 | |
| 169 | +| **S2** | 550 | 150 | 100 | 800 | |
| 170 | +| **S3** | 150 | - | - | 150 | |
| 171 | +| **S4** | - | - | 400 | 400 | |
| 172 | +| **Demand** | 700 | 250 | 500 | | |
| 173 | + |
| 174 | +--- |
| 175 | + |
| 176 | +## 🧮 Total Cost Calculation |
| 177 | + |
| 178 | +\[ |
| 179 | +\begin{align*} |
| 180 | +Z &= (100 \times 2) + (150 \times 3) + (550 \times 6) + (100 \times 7) + (150 \times 4) + (400 \times 4) \\ |
| 181 | + &= 200 + 450 + 3300 + 700 + 600 + 1600 \\ |
| 182 | + &= \boxed{6850} |
| 183 | +\end{align*} |
| 184 | +\] |
| 185 | + |
| 186 | +--- |
| 187 | + |
| 188 | +## ✅ Final Answer |
| 189 | + |
| 190 | +The minimum transportation cost, using the Minimum Cost Method, is: |
| 191 | + |
| 192 | +\[ |
| 193 | +\boxed{Z = 6850} |
| 194 | +\] |
| 195 | + |
| 196 | +--- |
| 197 | + |
| 198 | +## 🖋️ Note |
| 199 | + |
| 200 | +The Minimum Cost Method provides a feasible initial solution but does not guarantee optimality. |
| 201 | +To verify optimality, it is recommended to apply methods such as: |
| 202 | +- **MODI Method (Modified Distribution Method)** |
| 203 | +- **Stepping Stone Method** |
| 204 | +``` |
| 205 | + |
0 commit comments