|
| 1 | +```markdown |
| 2 | +# Detailed Solution of the Problem Using the Two-Phase Simplex Method |
| 3 | + |
| 4 | +## Original Problem |
| 5 | + |
| 6 | +**Minimize:** |
| 7 | + |
| 8 | +$$ |
| 9 | +Z = x_1 + x_2 + x_3 |
| 10 | +$$ |
| 11 | + |
| 12 | +**Subject to:** |
| 13 | + |
| 14 | +$$ |
| 15 | +\begin{cases} |
| 16 | +2x_1 + x_2 - x_3 \leq 10 \\ |
| 17 | +x_1 + x_2 + 2x_3 \geq 20 \\ |
| 18 | +2x_1 + x_2 + 3x_3 = 60 \\ |
| 19 | +x_1, x_2, x_3 \geq 0 |
| 20 | +\end{cases} |
| 21 | +$$ |
| 22 | + |
| 23 | +<br> |
| 24 | + |
| 25 | +## Phase I: Elimination of Artificial Variables |
| 26 | + |
| 27 | +### Step 1: Convert inequalities to equalities |
| 28 | + |
| 29 | +- For the $\leq$ constraint, add slack variable $s_1 \geq 0$: |
| 30 | + |
| 31 | +$$ |
| 32 | +2x_1 + x_2 - x_3 + s_1 = 10 |
| 33 | +$$ |
| 34 | +- For the $\geq$ constraint, subtract excess variable $s_2 \geq 0$ and add artificial variable $a_1 \geq 0$: |
| 35 | + |
| 36 | +$$ |
| 37 | +x_1 + x_2 + 2x_3 - s_2 + a_1 = 20 |
| 38 | +$$ |
| 39 | +- For the equality constraint, add artificial variable $a_2 \geq 0$: |
| 40 | + |
| 41 | +$$ |
| 42 | +2x_1 + x_2 + 3x_3 + a_2 = 60 |
| 43 | +$$ |
| 44 | + |
| 45 | + |
| 46 | +### Step 2: Auxiliary objective function for Phase I |
| 47 | + |
| 48 | +$$ |
| 49 | +\min W = a_1 + a_2 |
| 50 | +$$ |
| 51 | + |
| 52 | +<br> |
| 53 | + |
| 54 | +### Initial Tableau |
| 55 | + |
| 56 | +| **Base** | $x_1$ | $x_2$ | $x_3$ | $s_1$ | $s_2$ | $a_1$ | $a_2$ | **RHS** | |
| 57 | +| :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | |
| 58 | +| $\mathbf{s_1}$ | 2 | 1 | -1 | 1 | 0 | 0 | 0 | 10 | |
| 59 | +| $\mathbf{a_1}$ | 1 | 1 | 2 | 0 | -1 | 1 | 0 | 20 | |
| 60 | +| $\mathbf{a_2}$ | 2 | 1 | 3 | 0 | 0 | 0 | 1 | 60 | |
| 61 | +| $\mathbf{W}$ | -3 | -2 | -5 | 0 | 1 | 0 | 0 | 80 | |
| 62 | + |
| 63 | +*Note: The $W$ row is obtained by substituting $a_1$ and $a_2$ from the constraints.* |
| 64 | + |
| 65 | +<br> |
| 66 | + |
| 67 | +### Step 3: Iteration 1 — Enter $x_3$, Leave $a_1$ |
| 68 | + |
| 69 | +- **Pivot element:** $2$ (row $a_1$, column $x_3$). |
| 70 | +- **Row operations:** Divide row $a_1$ by $2$ and update other rows to zero out column $x_3$. |
| 71 | + |
| 72 | +<br> |
| 73 | + |
| 74 | +### Tableau after Iteration 1 |
| 75 | + |
| 76 | +| **Base** | $x_1$ | $x_2$ | $x_3$ | $s_1$ | $s_2$ | $a_1$ | $a_2$ | **RHS** | |
| 77 | +| :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | |
| 78 | +| $\mathbf{s_1}$ | 2.5 | 1.5 | 0 | 1 | -0.5 | 0.5 | 0 | 20 | |
| 79 | +| $\mathbf{x_3}$ | 0.5 | 0.5 | 1 | 0 | -0.5 | 0.5 | 0 | 10 | |
| 80 | +| $\mathbf{a_2}$ | 0.5 | -0.5 | 0 | 0 | 1.5 | -1.5 | 1 | 30 | |
| 81 | +| $\mathbf{W}$ | -0.5 | 0.5 | 0 | 0 | -1.5 | 2.5 | 0 | 130 | |
| 82 | + |
| 83 | + |
| 84 | +<br> |
| 85 | + |
| 86 | +### Step 4: Iteration 2 — Enter $s_2$, Leave $a_2$ |
| 87 | + |
| 88 | +- **Pivot element:** $1.5$ (row $a_2$, column $s_2$). |
| 89 | +- **Row operations:** Divide row $a_2$ by $1.5$ and update other rows to zero out column $s_2$. |
| 90 | + |
| 91 | +<br> |
| 92 | + |
| 93 | +### Tableau after Iteration 2 |
| 94 | + |
| 95 | +| **Base** | $x_1$ | $x_2$ | $x_3$ | $s_1$ | $s_2$ | $a_1$ | $a_2$ | **RHS** | |
| 96 | +| :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | |
| 97 | +| $\mathbf{s_1}$ | 8/3 | 4/3 | 0 | 1 | 0 | 0 | 1/3 | 30 | |
| 98 | +| $\mathbf{x_3}$ | 2/3 | 1/3 | 1 | 0 | 0 | 0 | 1/3 | 20 | |
| 99 | +| $\mathbf{s_2}$ | 1/3 | -1/3 | 0 | 0 | 1 | -1 | 2/3 | 20 | |
| 100 | +| $\mathbf{W}$ | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | |
| 101 | + |
| 102 | + |
| 103 | +<br> |
| 104 | + |
| 105 | +### ⚠️ **Attention: If Phase I ends with $W \neq 0$** |
| 106 | + |
| 107 | +If at the end of Phase I the auxiliary objective function $W$ **is not zero**, i.e., $W > 0$, this indicates that **there is no feasible solution to the original problem**. |
| 108 | + |
| 109 | +This happens because artificial variables could not be removed from the basis, signaling inconsistency in the original constraints. |
| 110 | + |
| 111 | +In this case, the Two-Phase Simplex method **stops and reports the problem as infeasible**. |
| 112 | + |
| 113 | +<br> |
| 114 | + |
| 115 | +## Phase II: Optimization of the Original Objective Function |
| 116 | + |
| 117 | +### Initial Tableau Phase II |
| 118 | + |
| 119 | +| **Base** | $x_1$ | $x_2$ | $x_3$ | $s_1$ | $s_2$ | **RHS** | |
| 120 | +| :--: | :--: | :--: | :--: | :--: | :--: | :--: | |
| 121 | +| $\mathbf{s_1}$ | 8/3 | 4/3 | 0 | 1 | 0 | 30 | |
| 122 | +| $\mathbf{x_3}$ | 2/3 | 1/3 | 1 | 0 | 0 | 20 | |
| 123 | +| $\mathbf{s_2}$ | 1/3 | -1/3 | 0 | 0 | 1 | 20 | |
| 124 | + |
| 125 | + |
| 126 | +<br> |
| 127 | + |
| 128 | +### Step 5: Write the original objective function in terms of the variables |
| 129 | + |
| 130 | +$$ |
| 131 | +x_3 = 20 - \frac{2}{3}x_1 - \frac{1}{3}x_2 |
| 132 | +$$ |
| 133 | + |
| 134 | +$$ |
| 135 | +Z = x_1 + x_2 + x_3 = x_1 + x_2 + 20 - \frac{2}{3}x_1 - \frac{1}{3}x_2 = 20 + \frac{1}{3}x_1 + \frac{2}{3}x_2 |
| 136 | +$$ |
| 137 | + |
| 138 | +--- |
| 139 | + |
| 140 | +### Step 6: Optimality Check |
| 141 | + |
| 142 | +The coefficients of $Z$ for the non-basic variables $x_1$ and $x_2$ are positive $\left(\frac{1}{3}\right.$ and $\left.\frac{2}{3}\right)$, indicating the current solution is optimal. |
| 143 | + |
| 144 | +--- |
| 145 | + |
| 146 | +## Optimal Solution |
| 147 | + |
| 148 | +$$ |
| 149 | +\boxed{ |
| 150 | +(x_1, x_2, x_3) = (0, 0, 20) \quad \text{with} \quad Z_{\min} = 20 |
| 151 | +} |
| 152 | +$$ |
| 153 | + |
| 154 | +<br> |
| 155 | + |
| 156 | +## Constraint Verification |
| 157 | + |
| 158 | +$$ |
| 159 | +\begin{cases} |
| 160 | +2(0) + 0 - 20 = -20 \leq 10 \quad \checkmark \\ |
| 161 | +0 + 0 + 2(20) = 40 \geq 20 \quad \checkmark \\ |
| 162 | +2(0) + 0 + 3(20) = 60 = 60 \quad \checkmark |
| 163 | +\end{cases} |
| 164 | +$$ |
| 165 | + |
| 166 | +<br> |
| 167 | + |
| 168 | +# **Summary** |
| 169 | + |
| 170 | +- The Two-Phase Simplex method was applied correctly. |
| 171 | +- Phase I eliminated artificial variables with $W = 0$, indicating the problem is **feasible**. |
| 172 | +- Phase II optimized the original objective function, finding the optimal solution. |
| 173 | +- If $W \neq 0$ at the end of Phase I, the problem would be **infeasible** (no feasible solution). |
| 174 | +```` |
| 175 | + |
0 commit comments