@@ -100,7 +100,7 @@ class AutoFitParam(DataSet):
100100 err_norm = StringItem (
101101 "enorm" ,
102102 default = 2.0 ,
103- help = _ ("for simplex, powel, cg and bfgs norm used " " by the error function" ),
103+ help = _ ("for simplex, powel, cg and bfgs norm used by the error function" ),
104104 )
105105 xtol = FloatItem (
106106 "xtol" , default = 0.0001 , help = _ ("for simplex, powel, least squares" )
@@ -724,7 +724,7 @@ def func(params):
724724
725725 return func
726726
727- def autofit_simplex (self , x0 : float ) -> np .ndarray :
727+ def autofit_simplex (self , x0 : np . ndarray ) -> np .ndarray :
728728 """Autofit using simplex
729729
730730 Args:
@@ -738,7 +738,7 @@ def autofit_simplex(self, x0: float) -> np.ndarray:
738738 x = fmin (self .get_norm_func (), x0 , xtol = prm .xtol , ftol = prm .ftol )
739739 return x
740740
741- def autofit_powel (self , x0 : float ) -> np .ndarray :
741+ def autofit_powel (self , x0 : np . ndarray ) -> np .ndarray :
742742 """Autofit using Powell
743743
744744 Args:
@@ -752,7 +752,7 @@ def autofit_powel(self, x0: float) -> np.ndarray:
752752 x = fmin_powell (self .get_norm_func (), x0 , xtol = prm .xtol , ftol = prm .ftol )
753753 return x
754754
755- def autofit_bfgs (self , x0 : float ) -> np .ndarray :
755+ def autofit_bfgs (self , x0 : np . ndarray ) -> np .ndarray :
756756 """Autofit using BFGS
757757
758758 Args:
@@ -766,7 +766,7 @@ def autofit_bfgs(self, x0: float) -> np.ndarray:
766766 x = fmin_bfgs (self .get_norm_func (), x0 , gtol = prm .gtol , norm = eval (prm .norm ))
767767 return x
768768
769- def autofit_l_bfgs (self , x0 : float ) -> np .ndarray :
769+ def autofit_l_bfgs (self , x0 : np . ndarray ) -> np .ndarray :
770770 """Autofit using L-BFGS-B
771771
772772 Args:
@@ -783,7 +783,7 @@ def autofit_l_bfgs(self, x0: float) -> np.ndarray:
783783 )
784784 return x
785785
786- def autofit_cg (self , x0 : float ) -> np .ndarray :
786+ def autofit_cg (self , x0 : np . ndarray ) -> np .ndarray :
787787 """Autofit using conjugate gradient
788788
789789 Args:
@@ -797,7 +797,7 @@ def autofit_cg(self, x0: float) -> np.ndarray:
797797 x = fmin_cg (self .get_norm_func (), x0 , gtol = prm .gtol , norm = eval (prm .norm ))
798798 return x
799799
800- def autofit_lq (self , x0 : float ) -> np .ndarray :
800+ def autofit_lq (self , x0 : np . ndarray ) -> np .ndarray :
801801 """Autofit using leastsq
802802
803803 Args:
0 commit comments