@@ -44,15 +44,16 @@ def custom_conv2d(a, b, bias):
4444 module = ExecutionEngine .setup_device ()
4545 device = module .custom_device ()
4646 torch ._dynamo .config .cache_size_limit = 64
47- test_conv2d (device , batch_size = 8 , in_channels = 3 , out_channels = 32 , input_size = 32 , kernel_size = 1 , stride = 1 , padding = 0 )
48- test_conv2d (device , batch_size = 1 , in_channels = 3 , out_channels = 64 , input_size = 64 // 2 , kernel_size = 7 , stride = 2 , padding = 3 )
49- test_conv2d (device , batch_size = 2 , in_channels = 3 , out_channels = 64 , input_size = 32 // 2 , kernel_size = 7 , stride = 1 , padding = 3 )
50- test_conv2d (device , batch_size = 4 , in_channels = 3 , out_channels = 64 , input_size = 64 // 2 , kernel_size = 7 , stride = 1 , padding = 3 )
51- test_conv2d (device , batch_size = 4 , in_channels = 3 , out_channels = 64 , input_size = 64 // 2 , kernel_size = 7 , stride = 1 , padding = 3 )
52- test_conv2d (device , batch_size = 2 , in_channels = 128 , out_channels = 256 , input_size = 13 , kernel_size = 5 , stride = 1 , padding = 2 )
53- test_conv2d (device , batch_size = 2 , in_channels = 128 , out_channels = 512 , input_size = 14 , kernel_size = 7 , stride = 1 , padding = 3 )
54- test_conv2d (device , batch_size = 1 , in_channels = 128 , out_channels = 256 , input_size = 14 , kernel_size = 3 , stride = 2 , padding = 1 )
55- test_conv2d (device , batch_size = 1 , in_channels = 128 , out_channels = 256 , input_size = 7 , kernel_size = 3 , stride = 2 , padding = 1 )
56- test_conv2d (device , batch_size = 1 , in_channels = 128 , out_channels = 256 , input_size = 2 , kernel_size = 1 , stride = 1 , padding = 0 )
57- test_conv2d (device , batch_size = 1 , in_channels = 128 , out_channels = 256 , input_size = 14 , kernel_size = 1 , stride = 2 , padding = 0 )
58- test_conv2d (device , batch_size = 1 , in_channels = 3 , out_channels = 768 , input_size = 224 , kernel_size = 16 ,stride = 16 , padding = 0 )
47+ with torch .no_grad ():
48+ test_conv2d (device , batch_size = 8 , in_channels = 3 , out_channels = 32 , input_size = 32 , kernel_size = 1 , stride = 1 , padding = 0 )
49+ test_conv2d (device , batch_size = 1 , in_channels = 3 , out_channels = 64 , input_size = 64 // 2 , kernel_size = 7 , stride = 2 , padding = 3 )
50+ test_conv2d (device , batch_size = 2 , in_channels = 3 , out_channels = 64 , input_size = 32 // 2 , kernel_size = 7 , stride = 1 , padding = 3 )
51+ test_conv2d (device , batch_size = 4 , in_channels = 3 , out_channels = 64 , input_size = 64 // 2 , kernel_size = 7 , stride = 1 , padding = 3 )
52+ test_conv2d (device , batch_size = 4 , in_channels = 3 , out_channels = 64 , input_size = 64 // 2 , kernel_size = 7 , stride = 1 , padding = 3 )
53+ test_conv2d (device , batch_size = 2 , in_channels = 128 , out_channels = 256 , input_size = 13 , kernel_size = 5 , stride = 1 , padding = 2 )
54+ test_conv2d (device , batch_size = 2 , in_channels = 128 , out_channels = 512 , input_size = 14 , kernel_size = 7 , stride = 1 , padding = 3 )
55+ test_conv2d (device , batch_size = 1 , in_channels = 128 , out_channels = 256 , input_size = 14 , kernel_size = 3 , stride = 2 , padding = 1 )
56+ test_conv2d (device , batch_size = 1 , in_channels = 128 , out_channels = 256 , input_size = 7 , kernel_size = 3 , stride = 2 , padding = 1 )
57+ test_conv2d (device , batch_size = 1 , in_channels = 128 , out_channels = 256 , input_size = 2 , kernel_size = 1 , stride = 1 , padding = 0 )
58+ test_conv2d (device , batch_size = 1 , in_channels = 128 , out_channels = 256 , input_size = 14 , kernel_size = 1 , stride = 2 , padding = 0 )
59+ test_conv2d (device , batch_size = 1 , in_channels = 3 , out_channels = 768 , input_size = 224 , kernel_size = 16 ,stride = 16 , padding = 0 )
0 commit comments