|
| 1 | +from collections import defaultdict |
| 2 | + |
| 3 | +from labkey.api_wrapper import APIWrapper |
| 4 | +from labkey.query import QueryFilter |
| 5 | + |
| 6 | +labkey_server = "localhost:8080" |
| 7 | +container_path = "Tutorials/HIV Study" # Full project/folder container path |
| 8 | +api = APIWrapper(labkey_server, container_path, use_ssl=False) |
| 9 | + |
| 10 | +################### |
| 11 | +# Create a data class domain |
| 12 | +################### |
| 13 | +simple_molecules_domain = api.domain.create({ |
| 14 | + "kind": "DataClass", |
| 15 | + "domainDesign": { |
| 16 | + "name": "SimpleMolecules", |
| 17 | + "fields": [ |
| 18 | + {"name": "formula", "label": "Chemical Formula", "rangeURI": "string"}, |
| 19 | + {"name": "molarMass", "label": "Molar Mass (g/mol)", "rangeURI": "double"}, |
| 20 | + ] |
| 21 | + } |
| 22 | +}) |
| 23 | + |
| 24 | +api.query.insert_rows("exp.data", "SimpleMolecules", [ |
| 25 | + {"name": "Water", "formula": "H20", "molarMass": 18.01528}, |
| 26 | + {"name": "Salt", "formula": "NaCl", "molarMass": 58.443} |
| 27 | +]) |
| 28 | + |
| 29 | +################### |
| 30 | +# Create a second data class domain |
| 31 | +################### |
| 32 | +substances_domain = api.domain.create({ |
| 33 | + "kind": "DataClass", |
| 34 | + "domainDesign": { |
| 35 | + "name": "Substances", |
| 36 | + "fields": [ |
| 37 | + {"name": "type", "rangeURI": "string"}, |
| 38 | + {"name": "fromNature", "rangeURI": "boolean"}, |
| 39 | + ] |
| 40 | + } |
| 41 | +}) |
| 42 | + |
| 43 | +api.query.insert_rows("exp.data", "Substances", [ |
| 44 | + {"name": "Ocean Water", "type": "liquid", "fromNature": True, "DataInputs/SimpleMolecules": "Water, Salt"}, |
| 45 | + {"name": "Bath Water", "type": "liquid", "fromNature": False, "DataInputs/SimpleMolecules": "Water"} |
| 46 | +]) |
| 47 | + |
| 48 | +################### |
| 49 | +# Create a sample type domain |
| 50 | +################### |
| 51 | +field_samples_domain = api.domain.create({ |
| 52 | + "kind": "SampleSet", |
| 53 | + "domainDesign": { |
| 54 | + "name": "FieldSamples", |
| 55 | + "fields": [ |
| 56 | + {"name": "name", "rangeURI": "string"}, |
| 57 | + {"name": "receivedDate", "rangeURI": "dateTime"}, |
| 58 | + {"name": "volume_mL", "rangeURI": "int"}, |
| 59 | + ] |
| 60 | + } |
| 61 | +}) |
| 62 | + |
| 63 | +api.query.insert_rows("samples", "FieldSamples", [ |
| 64 | + {"name": "OC-1", "receivedDate": "05/12/2025", "volume_mL": 400, "DataInputs/Substances": "Ocean Water"}, |
| 65 | + {"name": "OC-2", "receivedDate": "05/13/2025", "volume_mL": 600, "DataInputs/Substances": "Ocean Water"}, |
| 66 | + {"name": "OC-3", "receivedDate": "05/14/2025", "volume_mL": 800, "DataInputs/Substances": "Ocean Water"}, |
| 67 | + |
| 68 | + {"name": "BW-1", "receivedDate": "05/12/2025", "volume_mL": 400, "DataInputs/Substances": "Bath Water"}, |
| 69 | + {"name": "BW-2", "receivedDate": "05/13/2025", "volume_mL": 600, "DataInputs/Substances": "Bath Water"}, |
| 70 | + {"name": "BW-3", "receivedDate": "05/14/2025", "volume_mL": 800, "DataInputs/Substances": "Bath Water"}, |
| 71 | + |
| 72 | + {"name": "Mixed-1", "receivedDate": "05/18/2025", "volume_mL": 50, "DataInputs/Substances": "\"Bath Water\", \"Ocean Water\""}, |
| 73 | +]) |
| 74 | + |
| 75 | +################### |
| 76 | +# Query the lineage |
| 77 | +################### |
| 78 | + |
| 79 | +# Specification for which entity to query |
| 80 | +schema_name = "exp.data" |
| 81 | +query_name = "Substances" |
| 82 | +entity_name = "Ocean Water" |
| 83 | + |
| 84 | +# Fetch the LSID of the "seed" for the lineage request. In this case, we'll query for the "Ocean Water" entity in Substances. |
| 85 | +result = api.query.select_rows(schema_name, query_name, columns="Name, LSID", filter_array=[QueryFilter("name", entity_name)]) |
| 86 | +seed_lsid = result["rows"][0]["LSID"] |
| 87 | + |
| 88 | +# Lineage results includes the following: |
| 89 | +# "seed": The LSID of all furnished seed nodes. A string if only a single seed, otherwise, an array of strings. |
| 90 | +# "nodes": A dictionary of lineage node objects keyed by each node's LSID. Nodes are linked together by their "parents" and "children" edges. |
| 91 | +# |
| 92 | +# On each node the following properties allow for traversal of the flattened graph structure. |
| 93 | +# "parents": An array of objects representing edges in the graph from nodes that refer to this node. |
| 94 | +# "children": An aray of objects representing edges in the graph to nodes to which this node refers. |
| 95 | +lineage_result = api.experiment.lineage([seed_lsid], depth=10) |
| 96 | + |
| 97 | +################### |
| 98 | +# Traverse the lineage |
| 99 | +################### |
| 100 | +def traverse_lineage(node_lsid, lineage_result, depth=0, visited=None, nodes_by_depth=None): |
| 101 | + if visited is None: |
| 102 | + visited = set() |
| 103 | + if nodes_by_depth is None: |
| 104 | + nodes_by_depth = defaultdict(set) |
| 105 | + |
| 106 | + if node_lsid in visited: |
| 107 | + return nodes_by_depth |
| 108 | + |
| 109 | + visited.add(node_lsid) |
| 110 | + node = lineage_result["nodes"][node_lsid] |
| 111 | + |
| 112 | + def process_edges(edges, offset): |
| 113 | + new_depth = depth + offset |
| 114 | + for edge in edges: |
| 115 | + related_lsid = edge["lsid"] |
| 116 | + related_node = lineage_result["nodes"][related_lsid] |
| 117 | + nodes_by_depth[new_depth].add(related_node['name']) |
| 118 | + |
| 119 | + traverse_lineage(related_lsid, lineage_result, new_depth, visited.copy(), nodes_by_depth) |
| 120 | + |
| 121 | + process_edges(node.get("parents", []), -1) |
| 122 | + process_edges(node.get("children", []), 1) |
| 123 | + |
| 124 | + return nodes_by_depth |
| 125 | + |
| 126 | + |
| 127 | +nodes_by_depth = traverse_lineage(seed_lsid, lineage_result) |
| 128 | + |
| 129 | +print("\n===== LINEAGE BY DEPTH =====\n") |
| 130 | + |
| 131 | +# Print parents (negative depths) from furthest to closest |
| 132 | +for depth in range(min(nodes_by_depth.keys()), 0): |
| 133 | + if depth in nodes_by_depth: |
| 134 | + print(f"parent (depth = {depth}):") |
| 135 | + for node in sorted(nodes_by_depth[depth]): |
| 136 | + print(f"\t{node}") |
| 137 | + |
| 138 | +seed_node = lineage_result["nodes"][seed_lsid] |
| 139 | +print(f"Seed: {seed_node["name"]}") |
| 140 | + |
| 141 | +# Print children (positive depths) from closest to furthest |
| 142 | +for depth in range(1, max(nodes_by_depth.keys()) + 1): |
| 143 | + if depth in nodes_by_depth: |
| 144 | + print(f"children (depth = {depth}):") |
| 145 | + for node in sorted(nodes_by_depth[depth]): |
| 146 | + print(f"\t{node}") |
| 147 | + |
| 148 | +################### |
| 149 | +# Output: |
| 150 | +# |
| 151 | +# ===== LINEAGE BY DEPTH ===== |
| 152 | +# |
| 153 | +# parent (depth = -2): |
| 154 | +# Salt |
| 155 | +# Water |
| 156 | +# parent (depth = -1): |
| 157 | +# Derive data from Salt, Water |
| 158 | +# Seed: Ocean Water |
| 159 | +# children (depth = 1): |
| 160 | +# Derive 3 samples from Ocean Water |
| 161 | +# Derive sample from Ocean Water, Bath Water |
| 162 | +# children (depth = 2): |
| 163 | +# Mixed-1 |
| 164 | +# OC-1 |
| 165 | +# OC-2 |
| 166 | +# OC-3 |
| 167 | +################### |
0 commit comments