Skip to content

Commit 60b91c6

Browse files
committed
chore: add daily leetcode post brief_alternate 作业帮忙_translated
1 parent 0cc056d commit 60b91c6

File tree

1 file changed

+131
-0
lines changed

1 file changed

+131
-0
lines changed
Lines changed: 131 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,131 @@
1+
---
2+
title: brief_alternate Assignment
3+
date: '2024.01.01 0:00'
4+
tags:
5+
- - Python
6+
- - pandas
7+
abbrlink: dbbd7d58
8+
---
9+
# topic
10+
11+
[brief_alternate.pdf](..%2Fassets%2Fdocuments%2Fbrief_alternate.pdf)
12+
[superstore_transaction.csv](..%2Fassets%2Fdocuments%2Fsuperstore_transaction.csv)
13+
14+
# Thought:
15+
16+
Self -studypandasData processing,Before`import csv`Make much more useful。
17+
18+
What the knowledge point needs to be remembered is:
19+
20+
1. df["Name"] You can directly determine the first line as the name listed,并且返回一个只包含Nameof列表。
21+
2. idxmax()Return to the maximum valueindex,max()Maximum meal
22+
3. `.loc `The function is pandas An important function in it,Used to select and locate data in the data box。It allows you to choose some lines and columns,To make it DataFrame or Series Back to form。
23+
By using the line label and column label as the index,You can perform the following operations in the data box:
24+
.Choose a single line of data
25+
.Choose multi -line data
26+
.Select single -column data
27+
.Select multiple columns of data
28+
grammar: `df.loc[row_indexer, column_indexer]`
29+
in,row_indexer Is the label to choose a line,column_indexer Is the label of the column to be selected。
30+
4. unique()Return without duplicationvalueofnumbercount。
31+
code show as below:
32+
33+
[superstore](..%2Fassets%2Fdocuments%2Fsuperstore)
34+
```python s_p
35+
# Import pandas library as pd
36+
import pandas as pd
37+
38+
# Read CSV file named 'superstore_transaction.csv' and store it in a dataframe named 'df'
39+
df = pd.read_csv("superstore_transaction.csv")
40+
41+
# Remove "$" and "," from the values in the 'Profit' column and convert it to integer
42+
df["Profit"] = df["Profit"].str.replace('$', "").str.replace(",", "").astype(int)
43+
44+
# Remove "$" and "," from the values in the 'Sales' column and convert it to integer
45+
df["Sales"] = df["Sales"].str.replace('$', "").str.replace(",", "").astype(int)
46+
47+
# Get the index of the row with the maximum value in the 'Profit' column and store it in 'col_max_profit'
48+
col_max_profit = df["Profit"].idxmax()
49+
# Get the index of the row with the maximum value in the 'Sales' column and store it in 'col_max_sales'
50+
col_max_sales = df["Sales"].idxmax()
51+
52+
# Store the details of the transaction with highest sales
53+
highest_sales_info = [
54+
"=========================\n"
55+
"HIGHEST SALES TRANSACTION\n"
56+
"=========================\n",
57+
"Category: {}\n".format(df.loc[col_max_sales, "Category"]),
58+
"Customer Name: {}\n".format(df.loc[col_max_sales, "Customer Name"]),
59+
"Product Name: {}\n".format(df.loc[col_max_sales, "Product Name"]),
60+
"Segment: {}\n".format(df.loc[col_max_sales, "Segment"]),
61+
"Sub-Category: {}\n".format(df.loc[col_max_sales, "Sub-Category"]),
62+
"Profit: {}\n".format(df["Sales"].max()),
63+
]
64+
65+
# Store the details of the transaction with the highest profit
66+
highest_profit_info = [
67+
"==========================\n"
68+
"HIGHEST PROFIT TRANSACTION\n"
69+
"==========================\n",
70+
"Category: {}\n".format(df.loc[col_max_profit, "Category"]),
71+
"Customer Name: {}\n".format(df.loc[col_max_profit, "Customer Name"]),
72+
"Product Name: {}\n".format(df.loc[col_max_profit, "Product Name"]),
73+
"Segment: {}\n".format(df.loc[col_max_profit, "Segment"]),
74+
"Sub-Category: {}\n".format(df.loc[col_max_profit, "Sub-Category"]),
75+
"Profit: {}\n".format(df["Profit"].max()),
76+
]
77+
78+
# Open a file named 'summary_report.txt' in 'append' mode and store it in 'file'
79+
with open("summary_report.txt", "a") as file:
80+
# Write the 'highest_sales_info' details to the file
81+
file.write(''.join(highest_sales_info))
82+
file.write(''.join(highest_profit_info))
83+
84+
```
85+
86+
```python api
87+
import requests
88+
89+
url = ""
90+
payload = {}
91+
headers = {
92+
"apikey": ""
93+
}
94+
r = requests.request("GET", url, headers=headers, data=payload) # responseAPI
95+
# 查看response结果
96+
print("Status code:", r.status_code)
97+
# Back content isjsonFormat file
98+
# WillAPIresponse存储在一个变量中
99+
# json()Function only decodesjsonFormat return
100+
response_dict = r.json()
101+
# print(response_dict)
102+
# process result 获得response字典
103+
# 探索有关仓库of信息 response_dict字典of嵌套
104+
# print(response_dict['info']['rate'])
105+
106+
f = open("summary_report.txt", "w")
107+
head = [
108+
"=================================================\n"
109+
"SINGAPORE TO US DOLLAR EXCHANGE RATE IN REAL TIME\n"
110+
"=================================================\n"
111+
]
112+
f.writelines(head)
113+
f.writelines([str(response_dict['info']['rate'])+"\n"])
114+
f.close()
115+
print("over")
116+
117+
```
118+
```python customers
119+
import pandas as pd
120+
121+
df = pd.read_csv("superstore_transaction.csv")
122+
highest_sales_info = [
123+
"====================\n"
124+
"SUPERSTORE CUSTOMERS\n"
125+
"====================\n",
126+
"TOTAL: {}\n".format(df["Customer Name"].nunique(), "Category"),
127+
]
128+
with open("summary_report.txt", "a") as file:
129+
file.writelines(highest_sales_info)
130+
131+
```

0 commit comments

Comments
 (0)