|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import matplotlib.pyplot as plt\n", |
| 10 | + "%matplotlib inline\n", |
| 11 | + "\n", |
| 12 | + "# matplotlib.use(\"Agg\")\n", |
| 13 | + "\n", |
| 14 | + "from ase import Atoms\n", |
| 15 | + "from ase.build import bulk\n", |
| 16 | + "from ase.io import read\n", |
| 17 | + "from agox.databases import Database\n", |
| 18 | + "from agox.environments import Environment\n", |
| 19 | + "from agox.utils.graph_sorting import Analysis\n", |
| 20 | + "\n", |
| 21 | + "import numpy as np\n", |
| 22 | + "from sklearn.decomposition import PCA" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": null, |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "## Set up the plotting environment\n", |
| 32 | + "# matplotlib.rcParams.update(matplotlib.rcParamsDefault)\n", |
| 33 | + "plt.rc('text', usetex=True)\n", |
| 34 | + "plt.rc('font', family='cmr10', size=12)\n", |
| 35 | + "plt.rcParams[\"axes.formatter.use_mathtext\"] = True" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": null, |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "## Set the plotting parameters\n", |
| 45 | + "seed = 0\n", |
| 46 | + "identifier = \"\"\n", |
| 47 | + "# min_energy = -9.064090728759766" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "## Set the descriptors\n", |
| 57 | + "from agox.models.descriptors import SOAP\n", |
| 58 | + "local_descriptor = local_descriptor = SOAP.from_species([\"C\"], r_cut=5.0)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": null, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "## Set the calculators\n", |
| 68 | + "from chgnet.model import CHGNetCalculator\n", |
| 69 | + "from ase.calculators.singlepoint import SinglePointCalculator\n", |
| 70 | + "calc = CHGNetCalculator()" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "## Load the unrelaxed structures\n", |
| 80 | + "unrlxd_structures = read(\"DTMP\"+identifier+\"/unrlxd_structures_seed\"+str(seed)+\".traj\", index=\":\")\n", |
| 81 | + "for structure in unrlxd_structures:\n", |
| 82 | + " structure.calc = calc" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": null, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "## Load the relaxed structures\n", |
| 92 | + "rlxd_structures = read(\"DTMP\"+identifier+\"/rlxd_structures_seed\"+str(seed)+\".traj\", index=\":\")\n", |
| 93 | + "for structure in rlxd_structures:\n", |
| 94 | + " structure.calc = calc" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": null, |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [], |
| 102 | + "source": [ |
| 103 | + "# read energies from energies_unrlxd_seed0.txt and add to the respective structures using a SinglePointCalculator\n", |
| 104 | + "# the file has the form \"index energy\"\n", |
| 105 | + "filename = \"DTMP\"+identifier+\"/energies_unrlxd_seed\"+str(seed)+\".txt\"\n", |
| 106 | + "with open(filename) as f:\n", |
| 107 | + " for line in f:\n", |
| 108 | + " index, energy = line.split()\n", |
| 109 | + " index = int(index)\n", |
| 110 | + " energy = float(energy)\n", |
| 111 | + " unrlxd_structures[index].calc = SinglePointCalculator(unrlxd_structures[index], energy=energy * len(unrlxd_structures[index]))\n", |
| 112 | + "\n", |
| 113 | + "\n", |
| 114 | + "filename = \"DTMP\"+identifier+\"/energies_rlxd_seed\"+str(seed)+\".txt\"\n", |
| 115 | + "with open(filename) as f:\n", |
| 116 | + " for line in f:\n", |
| 117 | + " index, energy = line.split()\n", |
| 118 | + " index = int(index)\n", |
| 119 | + " energy = float(energy)\n", |
| 120 | + " rlxd_structures[index].calc = SinglePointCalculator(rlxd_structures[index], energy=energy * len(rlxd_structures[index]))" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": null, |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "diamond = bulk(\"C\", \"diamond\", a=3.567) # Lattice constant for diamond cubic carbon\n", |
| 130 | + "diamond.calc = calc\n", |
| 131 | + "diamond_energy = diamond.get_potential_energy()\n", |
| 132 | + "diamond_energy_per_atom = diamond_energy / len(diamond)\n", |
| 133 | + "\n", |
| 134 | + "graphite = read(\"graphite.vasp\")\n", |
| 135 | + "graphite.calc = calc\n", |
| 136 | + "graphite_energy = graphite.get_potential_energy()\n", |
| 137 | + "graphite_energy_per_atom = graphite_energy / len(graphite)" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": null, |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "# Calculate energies per atom for the relaxed structures\n", |
| 147 | + "energies_per_atom = [structure.get_potential_energy() / len(structure) for structure in rlxd_structures]\n", |
| 148 | + "min_energy = np.min(energies_per_atom)\n", |
| 149 | + "rlxd_delta_en_per_atom = np.array(energies_per_atom) - min_energy\n", |
| 150 | + "print(\"Relaxed min energy: \", np.min(energies_per_atom))" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": null, |
| 156 | + "metadata": {}, |
| 157 | + "outputs": [], |
| 158 | + "source": [ |
| 159 | + "# Calculate energies per atom for the unrelaxed structures\n", |
| 160 | + "energies_per_atom = [structure.get_potential_energy() / len(structure) for structure in unrlxd_structures]\n", |
| 161 | + "unrlxd_delta_en_per_atom = np.array(energies_per_atom) - min_energy\n", |
| 162 | + "print(\"Unrelaxed min energy: \", np.min(energies_per_atom))" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": null, |
| 168 | + "metadata": {}, |
| 169 | + "outputs": [], |
| 170 | + "source": [ |
| 171 | + "if abs( np.min(energies_per_atom) - min_energy ) > 5e-2:\n", |
| 172 | + " print(\"Minimum energy per atom is not zero. Check the energy calculation.\")" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": null, |
| 178 | + "metadata": {}, |
| 179 | + "outputs": [], |
| 180 | + "source": [ |
| 181 | + "## Set up the PCA\n", |
| 182 | + "pca = PCA(n_components=2)" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": null, |
| 188 | + "metadata": {}, |
| 189 | + "outputs": [], |
| 190 | + "source": [ |
| 191 | + "## Fit the PCA model to the unrelaxed or relaxed structures\n", |
| 192 | + "rlxd_string = \"rlxd\"" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": null, |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [], |
| 200 | + "source": [ |
| 201 | + "## Get the 'super atom' descriptors for the unrelaxed structures\n", |
| 202 | + "unrlxd_super_atoms = []\n", |
| 203 | + "for structure in unrlxd_structures:\n", |
| 204 | + " unrlxd_super_atoms.append( np.mean(local_descriptor.get_features(structure), axis=0) )" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "code", |
| 209 | + "execution_count": null, |
| 210 | + "metadata": {}, |
| 211 | + "outputs": [], |
| 212 | + "source": [ |
| 213 | + "## Get the 'super atom' descriptors for the relaxed structures\n", |
| 214 | + "rlxd_super_atoms = []\n", |
| 215 | + "for structure in rlxd_structures:\n", |
| 216 | + " rlxd_super_atoms.append( np.mean(local_descriptor.get_features(structure), axis=0) )" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "code", |
| 221 | + "execution_count": null, |
| 222 | + "metadata": {}, |
| 223 | + "outputs": [], |
| 224 | + "source": [ |
| 225 | + "## Save pca model\n", |
| 226 | + "import pickle\n", |
| 227 | + "if True:\n", |
| 228 | + " pca.fit(np.squeeze([arr for arr in rlxd_super_atoms]))\n", |
| 229 | + " with open(\"pca_model_all_rlxd_\"+str(seed)+\".pkl\", \"wb\") as f:\n", |
| 230 | + " pickle.dump(pca, f)\n", |
| 231 | + "\n", |
| 232 | + "## Load pca model\n", |
| 233 | + "with open(\"pca_model_all_\"+rlxd_string+\"_0.pkl\", \"rb\") as f:\n", |
| 234 | + " pca = pickle.load(f)" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "code", |
| 239 | + "execution_count": null, |
| 240 | + "metadata": {}, |
| 241 | + "outputs": [], |
| 242 | + "source": [ |
| 243 | + "# Get super atom descriptors for diamond and graphite\n", |
| 244 | + "graphite_super_atoms = [ np.mean(local_descriptor.get_features(graphite), axis=0) ]\n", |
| 245 | + "diamond_super_atoms = [ np.mean(local_descriptor.get_features(diamond), axis=0) ]" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "code", |
| 250 | + "execution_count": null, |
| 251 | + "metadata": {}, |
| 252 | + "outputs": [], |
| 253 | + "source": [ |
| 254 | + "## Transform the unrelaxed and relaxed structures to the reduced space\n", |
| 255 | + "unrlxd_X_reduced = pca.transform(np.squeeze([arr for arr in unrlxd_super_atoms]))\n", |
| 256 | + "rlxd_X_reduced = pca.transform(np.squeeze([arr for arr in rlxd_super_atoms]))\n", |
| 257 | + "graphite_X_reduced = pca.transform([np.squeeze([graphite_super_atoms])])\n", |
| 258 | + "diamond_X_reduced = pca.transform([np.squeeze([diamond_super_atoms])])" |
| 259 | + ] |
| 260 | + }, |
| 261 | + { |
| 262 | + "cell_type": "code", |
| 263 | + "execution_count": null, |
| 264 | + "metadata": {}, |
| 265 | + "outputs": [], |
| 266 | + "source": [ |
| 267 | + "## Get the index of the structure with the minimum energy\n", |
| 268 | + "min_energy_index = np.argmin(rlxd_delta_en_per_atom)\n", |
| 269 | + "print(min_energy_index)" |
| 270 | + ] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": null, |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [], |
| 277 | + "source": [ |
| 278 | + "## Plot the PCA\n", |
| 279 | + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 6))\n", |
| 280 | + "\n", |
| 281 | + "plt.subplots_adjust(wspace=0.05, hspace=0)\n", |
| 282 | + "\n", |
| 283 | + "## Get the maximum energy for the colourbar\n", |
| 284 | + "max_en = min(3.5, max(np.max(unrlxd_delta_en_per_atom), np.max(rlxd_delta_en_per_atom)))\n", |
| 285 | + "\n", |
| 286 | + "## Plot the PCA\n", |
| 287 | + "axes[0].scatter(unrlxd_X_reduced[:, 0], unrlxd_X_reduced[:, 1], c=unrlxd_delta_en_per_atom, cmap=\"viridis\", vmin = 0, vmax = max_en)\n", |
| 288 | + "axes[1].scatter(rlxd_X_reduced[:, 0], rlxd_X_reduced[:, 1], c=rlxd_delta_en_per_atom, cmap=\"viridis\", vmin = 0, vmax = max_en)\n", |
| 289 | + "\n", |
| 290 | + "## Add the minimum energy structures to the plot\n", |
| 291 | + "for ax in axes:\n", |
| 292 | + " ax.scatter(diamond_X_reduced[0,0], diamond_X_reduced[0,1], s=200, edgecolor=[1.0, 0.0, 0.0, 0.5], facecolor='none', linewidth=2, label='diamond')\n", |
| 293 | + " ax.scatter(graphite_X_reduced[0,0], graphite_X_reduced[0,1], s=200, edgecolor=[1.0, 0.0, 0.0, 1.0], facecolor='none', linewidth=2, label='graphite')\n", |
| 294 | + " ax.legend(fontsize=10)\n", |
| 295 | + " handles, labels = ax.get_legend_handles_labels()\n", |
| 296 | + " ax.legend(handles[::-1], labels[::-1], facecolor='white', framealpha=1.0, edgecolor='black', fancybox=False, loc='lower right')\n", |
| 297 | + "\n", |
| 298 | + "## Add labels\n", |
| 299 | + "fig.text(0.5, 0.04, 'Principal Component 1', ha='center', fontsize=15)\n", |
| 300 | + "axes[0].set_ylabel('Principal Component 2', fontsize=15)\n", |
| 301 | + "axes[0].set_title('Unrelaxed')\n", |
| 302 | + "axes[1].set_title('Relaxed')\n", |
| 303 | + "if identifier == \"_VASP\":\n", |
| 304 | + " if rlxd_string == \"rlxd\":\n", |
| 305 | + " xlims = [-11, 8]\n", |
| 306 | + " ylims = [-5, 6]\n", |
| 307 | + " else:\n", |
| 308 | + " xlims = [-9, 13]\n", |
| 309 | + " ylims = [-7, 12]\n", |
| 310 | + "else:\n", |
| 311 | + " if rlxd_string == \"rlxd\":\n", |
| 312 | + " xlims = [-310, 310]\n", |
| 313 | + " ylims = [-53, 53]\n", |
| 314 | + " else:\n", |
| 315 | + " xlims = [-5, 13]\n", |
| 316 | + " ylims = [-6.5, 13]\n", |
| 317 | + "\n", |
| 318 | + "for ax in axes:\n", |
| 319 | + " ax.tick_params(axis='both', direction='in')\n", |
| 320 | + " ax.set_xlim(xlims)\n", |
| 321 | + " ax.set_ylim(ylims)\n", |
| 322 | + "\n", |
| 323 | + "## Unify tick labels\n", |
| 324 | + "xticks = axes[0].get_xticks()\n", |
| 325 | + "xticks = xticks[(xticks >= xlims[0]) & (xticks <= xlims[1])]\n", |
| 326 | + "\n", |
| 327 | + "axes[1].set_xticks(xticks)\n", |
| 328 | + "axes[1].set_yticklabels([])\n", |
| 329 | + "axes[0].tick_params(axis='x', labelbottom=True, top=True)\n", |
| 330 | + "axes[1].tick_params(axis='x', labelbottom=True, top=True)\n", |
| 331 | + "axes[0].tick_params(axis='y', labelbottom=True, right=True)\n", |
| 332 | + "axes[1].tick_params(axis='y', labelbottom=True, right=True)\n", |
| 333 | + "\n", |
| 334 | + "## Make axes[0] and axes[1] the same width\n", |
| 335 | + "axes[0].set_box_aspect(1.7)\n", |
| 336 | + "axes[1].set_box_aspect(1.7)\n", |
| 337 | + "\n", |
| 338 | + "## Add colorbar next to the axes\n", |
| 339 | + "cbar = fig.colorbar(axes[1].collections[0], ax=axes, orientation='vertical', fraction=0.085, pad=0.02)\n", |
| 340 | + "cbar.set_label('Formation energy (eV/atom)', fontsize=15)\n", |
| 341 | + "\n", |
| 342 | + "## Save the figure\n", |
| 343 | + "plt.savefig('C_RAFFLE'+identifier+'_pca_'+rlxd_string+'_fit_seed'+str(seed)+'.pdf', bbox_inches='tight', pad_inches=0, facecolor=fig.get_facecolor(), edgecolor='none')" |
| 344 | + ] |
| 345 | + }, |
| 346 | + { |
| 347 | + "cell_type": "code", |
| 348 | + "execution_count": null, |
| 349 | + "metadata": {}, |
| 350 | + "outputs": [], |
| 351 | + "source": [] |
| 352 | + } |
| 353 | + ], |
| 354 | + "metadata": { |
| 355 | + "kernelspec": { |
| 356 | + "display_name": "raffle_env", |
| 357 | + "language": "python", |
| 358 | + "name": "python3" |
| 359 | + }, |
| 360 | + "language_info": { |
| 361 | + "codemirror_mode": { |
| 362 | + "name": "ipython", |
| 363 | + "version": 3 |
| 364 | + }, |
| 365 | + "file_extension": ".py", |
| 366 | + "mimetype": "text/x-python", |
| 367 | + "name": "python", |
| 368 | + "nbconvert_exporter": "python", |
| 369 | + "pygments_lexer": "ipython3", |
| 370 | + "version": "3.12.8" |
| 371 | + } |
| 372 | + }, |
| 373 | + "nbformat": 4, |
| 374 | + "nbformat_minor": 2 |
| 375 | +} |
0 commit comments