@@ -964,33 +964,43 @@ which can be rewritten as
964964
965965
966966We can solve this equation iteratively keeping in mind the time-ordering of the of the operators
967+ !bt
967968\[
968969\hat{U}(t,t_0)=1-\frac{\imath}{\hbar}\int_{t_0}^t dt' \hat{H}_I(t')+\left(\frac{-\imath}{\hbar}\right)^2\int_{t_0}^t dt'\int_{t_0}^{t'} dt'' \hat{H}_I(t')\hat{H}_I(t'')+\dots
969970\]
971+ !et
970972The third term can be written as
973+ !bt
971974\[
972975\int_{t_0}^t dt'\int_{t_0}^{t'} dt'' \hat{H}_I(t')\hat{H}_I(t'')=
973976\frac{1}{2}\int_{t_0}^t dt'\int_{t_0}^{t'} dt'' \hat{H}_I(t')\hat{H}_I(t'')
974977+\frac{1}{2}\int_{t_0}^t dt''\int_{t''}^{t} dt' \hat{H}_I(t')\hat{H}_I(t'').
975978\]
976-
979+ !et
977980
978981!split
979982===== Interaction picture =====
980983
981984
982985We obtain this expression by changing the integration order in the second term
983986via a change of the integration variables $t'$ and $t''$ in
987+ !bt
984988\[
985989\frac{1}{2}\int_{t_0}^t dt'\int_{t_0}^{t'} dt'' \hat{H}_I(t')\hat{H}_I(t'').
986990\]
991+ !et
987992We can rewrite the terms which contain the double integral as
993+ !bt
988994\[
989- \int_{t_0}^t dt'\int_{t_0}^{t'} dt'' \hat{H}_I(t')\hat{H}_I(t'')=\]
995+ \int_{t_0}^t dt'\int_{t_0}^{t'} dt'' \hat{H}_I(t')\hat{H}_I(t'')=
996+ \]
997+ !et
998+ !bt
990999\[
9911000\frac{1}{2}\int_{t_0}^t dt'\int_{t_0}^{t'} dt''\left[\hat{H}_I(t')\hat{H}_I(t'')\Theta(t'-t'')
9921001+\hat{H}_I(t')\hat{H}_I(t'')\Theta(t''-t')\right],
9931002\]
1003+ !et
9941004with $\Theta(t''-t')$ being the standard Heavyside or step function. The step function allows us to give a specific time-ordering to the above expression.
9951005
9961006
@@ -1000,10 +1010,12 @@ with $\Theta(t''-t')$ being the standard Heavyside or step function. The step fu
10001010
10011011
10021012With the $\Theta$-function we can rewrite the last expression as
1013+ !bt
10031014\[
10041015\int_{t_0}^t dt'\int_{t_0}^{t'} dt'' \hat{H}_I(t')\hat{H}_I(t'')=
10051016\frac{1}{2}\int_{t_0}^t dt'\int_{t_0}^{t'} dt''\hat{T}\left[\hat{H}_I(t')\hat{H}_I(t'')\right],
10061017\]
1018+ !et
10071019where $\Hat{T}$ is the so-called time-ordering operator.
10081020
10091021
@@ -1013,11 +1025,13 @@ where $\Hat{T}$ is the so-called time-ordering operator.
10131025
10141026
10151027With this definition, we can rewrite the expression for $\hat{U}$ as
1028+ !bt
10161029\[
10171030\hat{U}(t,t_0)=\sum_{n=0}^{\infty}\left(\frac{-\imath}{\hbar}\right)^n\frac{1}{n!}
10181031\int_{t_0}^t dt_1\dots \int_{t_0}^t dt_N \hat{T}\left[\hat{H}_I(t_1)\dots\hat{H}_I(t_n)\right]=\hat{T}\exp{\left[\frac{-\imath}{\hbar}
10191032\int_{t_0}^t dt' \hat{H}_I(t')\right]}.
10201033\]
1034+ !et
10211035The above time-evolution operator in the interaction picture will be used
10221036to derive various contributions to many-body perturbation theory. See also exercise 26 for a discussion of the various time orderings.
10231037
@@ -1028,59 +1042,75 @@ to derive various contributions to many-body perturbation theory. See also exerc
10281042
10291043
10301044We wish now to define a unitary transformation in terms of $\hat{H}$ by defining
1045+ !bt
10311046\[
10321047|\Psi_H(t)\rangle = \exp{(\imath\hat{H}t/\hbar)}|\Psi_S(t)\rangle,
10331048\]
1049+ !et
10341050which is again a unitary transformation carried out now at the time $t$ on the
10351051wave function in the Schr\"odinger picture. If we combine this equation with
10361052Schr\"odinger's equation we obtain the following equation of motion
1053+ !bt
10371054\[
10381055\imath \hbar\frac{\partial }{\partial t}|\Psi_H(t)\rangle = 0,
10391056\]
1057+ !et
10401058meaning that $|\Psi_H(t)\rangle$ is time independent. An operator in this picture is defined as
1059+ !bt
10411060\[
10421061\hat{O}_H(t)=
10431062\exp{(\imath\hat{H}t/\hbar)}\hat{O}_S\exp{(-\imath\hat{H}t/\hbar)}.
10441063\]
1045-
1064+ !et
10461065
10471066!split
10481067===== Interaction picture =====
10491068
10501069
10511070The time dependence is then in the operator itself, and this yields in turn the
10521071following equation of motion
1072+ !bt
10531073\[
10541074\imath \hbar\frac{\partial }{\partial t}\hat{O}_H(t) = \exp{(\imath\hat{H}t/\hbar)}\left[\hat{O}_H\hat{H}-\hat{H}\hat{O}_H\right]\exp{(-\imath\hat{H}t/\hbar)}=\left[\hat{O}_H(t),\hat{H}\right].
10551075\]
1076+ !et
10561077We note that an operator in the Heisenberg picture can be related to the corresponding
10571078operator in the interaction picture as
1079+ !bt
10581080\[
10591081\hat{O}_H(t)=
1060- \exp{(\imath\hat{H}t/\hbar)}\hat{O}_S\exp{(-\imath\hat{H}t/\hbar)}=\]
1082+ \exp{(\imath\hat{H}t/\hbar)}\hat{O}_S\exp{(-\imath\hat{H}t/\hbar)}=
1083+ \]
1084+ !et
1085+ !bt
10611086\[
10621087\exp{(\imath\hat{H}_It/\hbar)}\exp{(-\imath\hat{H}_0t/\hbar)}\hat{O}_I\exp{(\imath\hat{H}_0t/\hbar)}\exp{(-\imath\hat{H}_It/\hbar)}.
10631088\]
1064-
1089+ !et
10651090
10661091!split
10671092===== Interaction picture =====
10681093
10691094With our definition of the time evolution operator we see that
1095+ !bt
10701096\[
10711097\hat{O}_H(t)=\hat{U}(0,t)\hat{O}_I\hat{U}(t,0),
10721098\]
1099+ !et
10731100which in turn implies that $\hat{O}_S=\hat{O}_I(0)=\hat{O}_H(0)$, all operators are equal at $t=0$. The wave function in the Heisenberg formalism is
10741101related to the other pictures as
1102+ !bt
10751103\[
10761104|\Psi_H\rangle=|\Psi_S(0)\rangle=|\Psi_I(0)\rangle,
10771105\]
1106+ !et
10781107since the wave function in the Heisenberg picture is time independent.
10791108We can relate this wave function to that a given time $t$ via the time evolution operator as
1109+ !bt
10801110\[
10811111|\Psi_H\rangle=\hat{U}(0,t)|\Psi_I(t)\rangle.
10821112\]
1083-
1113+ !et
10841114
10851115!split
10861116===== Interaction picture =====
@@ -1090,9 +1120,11 @@ We assume that the interaction term is switched on gradually. Our wave function
10901120given by the solution to the unperturbed part of our Hamiltonian $\hat{H}_0$.
10911121We assume the ground state is given by $|\Phi_0\rangle$, which could be a Slater determinant.
10921122We define our Hamiltonian as
1123+ !bt
10931124\[
10941125\hat{H}=\hat{H}_0+\exp{(-\varepsilon t/\hbar)}\hat{H}_I,
10951126\]
1127+ !et
10961128where $\varepsilon$ is a small number. The way we write the Hamiltonian
10971129and its interaction term is meant to simulate the switching of the interaction.
10981130
@@ -1102,46 +1134,58 @@ and its interaction term is meant to simulate the switching of the interaction.
11021134
11031135
11041136The time evolution of the wave function in the interaction picture is then
1137+ !bt
11051138\[
11061139|\Psi_I(t) \rangle = \hat{U}_{\varepsilon}(t,t_0)|\Psi_I(t_0)\rangle,
11071140\]
1141+ !et
11081142with
1143+ !bt
11091144\[
11101145\hat{U}_{\varepsilon}(t,t_0)=\sum_{n=0}^{\infty}\left(\frac{-\imath}{\hbar}\right)^n\frac{1}{n!}
11111146\int_{t_0}^t dt_1\dots \int_{t_0}^t dt_N \exp{(-\varepsilon(t_1+\dots+t_n)/\hbar)}\hat{T}\left[\hat{H}_I(t_1)\dots\hat{H}_I(t_n)\right]
11121147\]
1113-
1148+ !et
11141149
11151150!split
11161151===== Interaction picture =====
11171152
11181153In the limit $t_0\rightarrow -\infty$, the solution ot Schr\"odinger's equation is
11191154$|\Phi_0\rangle$, and the eigenenergies are given by
1155+ !bt
11201156\[
11211157\hat{H}_0|\Phi_0\rangle=W_0|\Phi_0\rangle,
11221158\]
1159+ !et
11231160meaning that
1161+ !bt
11241162\[
11251163|\Psi_S(t_0)\rangle = \exp{(-\imath W_0t_0/\hbar)}|\Phi_0\rangle,
11261164\]
1165+ !et
11271166with the corresponding interaction picture wave function given by
1167+ !bt
11281168\[
11291169|\Psi_I(t_0)\rangle = \exp{(\imath \hat{H}_0t_0/\hbar)}|\Psi_S(t_0)\rangle=|\Phi_0\rangle.
11301170\]
1131-
1171+ !et
11321172
11331173
11341174!split
11351175===== Interaction picture =====
11361176
11371177The solution becomes time independent in the limit $t_0\rightarrow -\infty$.
11381178The same conclusion can be reached by looking at
1179+ !bt
11391180\[
11401181\imath \hbar\frac{\partial }{\partial t}|\Psi_I(t)\rangle =
11411182\exp{(\varepsilon |t|/\hbar)}\hat{H}_I|\Psi_I(t)\rangle
11421183\]
1184+ !et
11431185and taking the limit $t\rightarrow -\infty$.
11441186We can rewrite the equation for the wave function at a time $t=0$ as
1187+ !bt
11451188\[
11461189|\Psi_I(0) \rangle = \hat{U}_{\varepsilon}(0,-\infty)|\Phi_0\rangle.
11471190\]
1191+ !et
0 commit comments