Skip to content

Commit c053bd3

Browse files
committed
updating
1 parent 14b9351 commit c053bd3

File tree

9 files changed

+701
-1282
lines changed

9 files changed

+701
-1282
lines changed

doc/pub/week11/html/week11-bs.html

Lines changed: 91 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -69,6 +69,34 @@
6969
('Inverse DFT', 2, None, 'inverse-dft'),
7070
('Orthonormality', 2, None, 'orthonormality'),
7171
('Inverse transform', 2, None, 'inverse-transform'),
72+
('QFT, short review from last week',
73+
2,
74+
None,
75+
'qft-short-review-from-last-week'),
76+
('Advantage 1: Exponential Speedup',
77+
2,
78+
None,
79+
'advantage-1-exponential-speedup'),
80+
('Advantage 2: Quantum Parallelism',
81+
2,
82+
None,
83+
'advantage-2-quantum-parallelism'),
84+
('Advantage 3: Compact Circuit Implementation',
85+
2,
86+
None,
87+
'advantage-3-compact-circuit-implementation'),
88+
('Advantage 4: Applications in Quantum Computing',
89+
2,
90+
None,
91+
'advantage-4-applications-in-quantum-computing'),
92+
('Advantage 5: Reduced Memory Complexity',
93+
2,
94+
None,
95+
'advantage-5-reduced-memory-complexity'),
96+
('Advantage 6: Quantum Signal Processing',
97+
2,
98+
None,
99+
'advantage-6-quantum-signal-processing'),
72100
('From DFT to QFT', 2, None, 'from-dft-to-qft'),
73101
('In terms of arbitrary states',
74102
2,
@@ -185,6 +213,13 @@
185213
<!-- navigation toc: --> <li><a href="#inverse-dft" style="font-size: 80%;">Inverse DFT</a></li>
186214
<!-- navigation toc: --> <li><a href="#orthonormality" style="font-size: 80%;">Orthonormality</a></li>
187215
<!-- navigation toc: --> <li><a href="#inverse-transform" style="font-size: 80%;">Inverse transform</a></li>
216+
<!-- navigation toc: --> <li><a href="#qft-short-review-from-last-week" style="font-size: 80%;">QFT, short review from last week</a></li>
217+
<!-- navigation toc: --> <li><a href="#advantage-1-exponential-speedup" style="font-size: 80%;">Advantage 1: Exponential Speedup</a></li>
218+
<!-- navigation toc: --> <li><a href="#advantage-2-quantum-parallelism" style="font-size: 80%;">Advantage 2: Quantum Parallelism</a></li>
219+
<!-- navigation toc: --> <li><a href="#advantage-3-compact-circuit-implementation" style="font-size: 80%;">Advantage 3: Compact Circuit Implementation</a></li>
220+
<!-- navigation toc: --> <li><a href="#advantage-4-applications-in-quantum-computing" style="font-size: 80%;">Advantage 4: Applications in Quantum Computing</a></li>
221+
<!-- navigation toc: --> <li><a href="#advantage-5-reduced-memory-complexity" style="font-size: 80%;">Advantage 5: Reduced Memory Complexity</a></li>
222+
<!-- navigation toc: --> <li><a href="#advantage-6-quantum-signal-processing" style="font-size: 80%;">Advantage 6: Quantum Signal Processing</a></li>
188223
<!-- navigation toc: --> <li><a href="#from-dft-to-qft" style="font-size: 80%;">From DFT to QFT</a></li>
189224
<!-- navigation toc: --> <li><a href="#in-terms-of-arbitrary-states" style="font-size: 80%;">In terms of arbitrary states</a></li>
190225
<!-- navigation toc: --> <li><a href="#unitarity" style="font-size: 80%;">Unitarity</a></li>
@@ -484,6 +519,62 @@ <h2 id="inverse-transform" class="anchor">Inverse transform </h2>
484519
$$
485520

486521

522+
<!-- !split -->
523+
<h2 id="qft-short-review-from-last-week" class="anchor">QFT, short review from last week </h2>
524+
525+
<ol>
526+
<li> QFTs are the quantum analogue of the Discrete Fourier Transform (DFT).</li>
527+
<li> They play a crucial role in quantum algorithms like Shor&#8217;s Algorithm and the Quantum Phase Estimation (QPE) algorithm</li>
528+
<li> QFTs provide an <em>exponential speedup</em> over classical Fourier Transform methods.</li>
529+
</ol>
530+
<!-- !split -->
531+
<h2 id="advantage-1-exponential-speedup" class="anchor">Advantage 1: Exponential Speedup </h2>
532+
<ol>
533+
<li> Classical Discrete Fourier Transforms (DFTs) require \( O(N^2) \) operations.</li>
534+
<li> The Fast Fourier Transforms (FFTs) improve this to \( O(N \log N) \) operations.</li>
535+
<li> QFTs reduce complexity to \( O((\log N)^2) \) using quantum gates.</li>
536+
</ol>
537+
<!-- !split -->
538+
<h2 id="advantage-2-quantum-parallelism" class="anchor">Advantage 2: Quantum Parallelism </h2>
539+
<p>QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously.
540+
This is crucial in algorithms like:
541+
</p>
542+
<ol>
543+
<li> Shor&#8217;s Algorithm for factoring large numbers.</li>
544+
<li> Quantum Phase Estimation (QPE) for eigenvalue extraction.</li>
545+
</ol>
546+
<!-- !split -->
547+
<h2 id="advantage-3-compact-circuit-implementation" class="anchor">Advantage 3: Compact Circuit Implementation </h2>
548+
549+
<ol>
550+
<li> QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li>
551+
<li> QFTs are highly efficient for <em>quantum hardware</em>.</li>
552+
</ol>
553+
<!-- !split -->
554+
<h2 id="advantage-4-applications-in-quantum-computing" class="anchor">Advantage 4: Applications in Quantum Computing </h2>
555+
<ol>
556+
<li> \textbf{Shor&#8217;s Algorithm:} Uses QFT to find periodicity in modular exponentiation.</li>
557+
<li> \textbf{Quantum Phase Estimation (QPE):} Extracts eigenvalues of unitary matrices.</li>
558+
<li> \textbf{Quantum Signal Processing:} Enables spectral analysis on quantum data.</li>
559+
</ol>
560+
<!-- !split -->
561+
<h2 id="advantage-5-reduced-memory-complexity" class="anchor">Advantage 5: Reduced Memory Complexity </h2>
562+
563+
<ol>
564+
<li> Classical DFTs require \( O(N) \) space.</li>
565+
<li> QFTs store Fourier-transformed coefficients <em>implicitly</em> in qubit amplitudes.</li>
566+
<li> Only \( O(n) \) qubits are needed for a size \( N = 2^n \) transformation.</li>
567+
</ol>
568+
<!-- !split -->
569+
<h2 id="advantage-6-quantum-signal-processing" class="anchor">Advantage 6: Quantum Signal Processing </h2>
570+
<p>QFTs enable applications such as:</p>
571+
<ol>
572+
<li> Quantum spectral analysis.</li>
573+
<li> Quantum image processing.</li>
574+
<li> Quantum filtering and denoising.</li>
575+
</ol>
576+
<p>These can enhance AI, cryptography, and data processing.</p>
577+
487578
<!-- !split -->
488579
<h2 id="from-dft-to-qft" class="anchor">From DFT to QFT </h2>
489580

doc/pub/week11/html/week11-reveal.html

Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -439,6 +439,76 @@ <h2 id="inverse-transform">Inverse transform </h2>
439439
<p>&nbsp;<br>
440440
</section>
441441

442+
<section>
443+
<h2 id="qft-short-review-from-last-week">QFT, short review from last week </h2>
444+
445+
<ol>
446+
<p><li> QFTs are the quantum analogue of the Discrete Fourier Transform (DFT).</li>
447+
<p><li> They play a crucial role in quantum algorithms like Shor&#8217;s Algorithm and the Quantum Phase Estimation (QPE) algorithm</li>
448+
<p><li> QFTs provide an <em>exponential speedup</em> over classical Fourier Transform methods.</li>
449+
</ol>
450+
</section>
451+
452+
<section>
453+
<h2 id="advantage-1-exponential-speedup">Advantage 1: Exponential Speedup </h2>
454+
<ol>
455+
<p><li> Classical Discrete Fourier Transforms (DFTs) require \( O(N^2) \) operations.</li>
456+
<p><li> The Fast Fourier Transforms (FFTs) improve this to \( O(N \log N) \) operations.</li>
457+
<p><li> QFTs reduce complexity to \( O((\log N)^2) \) using quantum gates.</li>
458+
</ol>
459+
</section>
460+
461+
<section>
462+
<h2 id="advantage-2-quantum-parallelism">Advantage 2: Quantum Parallelism </h2>
463+
<p>QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously.
464+
This is crucial in algorithms like:
465+
</p>
466+
<ol>
467+
<p><li> Shor&#8217;s Algorithm for factoring large numbers.</li>
468+
<p><li> Quantum Phase Estimation (QPE) for eigenvalue extraction.</li>
469+
</ol>
470+
</section>
471+
472+
<section>
473+
<h2 id="advantage-3-compact-circuit-implementation">Advantage 3: Compact Circuit Implementation </h2>
474+
475+
<ol>
476+
<p><li> QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li>
477+
<p><li> QFTs are highly efficient for <em>quantum hardware</em>.</li>
478+
</ol>
479+
</section>
480+
481+
<section>
482+
<h2 id="advantage-4-applications-in-quantum-computing">Advantage 4: Applications in Quantum Computing </h2>
483+
<ol>
484+
<p><li> \textbf{Shor&#8217;s Algorithm:} Uses QFT to find periodicity in modular exponentiation.</li>
485+
<p><li> \textbf{Quantum Phase Estimation (QPE):} Extracts eigenvalues of unitary matrices.</li>
486+
<p><li> \textbf{Quantum Signal Processing:} Enables spectral analysis on quantum data.</li>
487+
</ol>
488+
</section>
489+
490+
<section>
491+
<h2 id="advantage-5-reduced-memory-complexity">Advantage 5: Reduced Memory Complexity </h2>
492+
493+
<ol>
494+
<p><li> Classical DFTs require \( O(N) \) space.</li>
495+
<p><li> QFTs store Fourier-transformed coefficients <em>implicitly</em> in qubit amplitudes.</li>
496+
<p><li> Only \( O(n) \) qubits are needed for a size \( N = 2^n \) transformation.</li>
497+
</ol>
498+
</section>
499+
500+
<section>
501+
<h2 id="advantage-6-quantum-signal-processing">Advantage 6: Quantum Signal Processing </h2>
502+
<p>QFTs enable applications such as:</p>
503+
<ol>
504+
<p><li> Quantum spectral analysis.</li>
505+
<p><li> Quantum image processing.</li>
506+
<p><li> Quantum filtering and denoising.</li>
507+
</ol>
508+
<p>
509+
<p>These can enhance AI, cryptography, and data processing.</p>
510+
</section>
511+
442512
<section>
443513
<h2 id="from-dft-to-qft">From DFT to QFT </h2>
444514

doc/pub/week11/html/week11-solarized.html

Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -96,6 +96,34 @@
9696
('Inverse DFT', 2, None, 'inverse-dft'),
9797
('Orthonormality', 2, None, 'orthonormality'),
9898
('Inverse transform', 2, None, 'inverse-transform'),
99+
('QFT, short review from last week',
100+
2,
101+
None,
102+
'qft-short-review-from-last-week'),
103+
('Advantage 1: Exponential Speedup',
104+
2,
105+
None,
106+
'advantage-1-exponential-speedup'),
107+
('Advantage 2: Quantum Parallelism',
108+
2,
109+
None,
110+
'advantage-2-quantum-parallelism'),
111+
('Advantage 3: Compact Circuit Implementation',
112+
2,
113+
None,
114+
'advantage-3-compact-circuit-implementation'),
115+
('Advantage 4: Applications in Quantum Computing',
116+
2,
117+
None,
118+
'advantage-4-applications-in-quantum-computing'),
119+
('Advantage 5: Reduced Memory Complexity',
120+
2,
121+
None,
122+
'advantage-5-reduced-memory-complexity'),
123+
('Advantage 6: Quantum Signal Processing',
124+
2,
125+
None,
126+
'advantage-6-quantum-signal-processing'),
99127
('From DFT to QFT', 2, None, 'from-dft-to-qft'),
100128
('In terms of arbitrary states',
101129
2,
@@ -421,6 +449,62 @@ <h2 id="inverse-transform">Inverse transform </h2>
421449
$$
422450

423451

452+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
453+
<h2 id="qft-short-review-from-last-week">QFT, short review from last week </h2>
454+
455+
<ol>
456+
<li> QFTs are the quantum analogue of the Discrete Fourier Transform (DFT).</li>
457+
<li> They play a crucial role in quantum algorithms like Shor&#8217;s Algorithm and the Quantum Phase Estimation (QPE) algorithm</li>
458+
<li> QFTs provide an <em>exponential speedup</em> over classical Fourier Transform methods.</li>
459+
</ol>
460+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
461+
<h2 id="advantage-1-exponential-speedup">Advantage 1: Exponential Speedup </h2>
462+
<ol>
463+
<li> Classical Discrete Fourier Transforms (DFTs) require \( O(N^2) \) operations.</li>
464+
<li> The Fast Fourier Transforms (FFTs) improve this to \( O(N \log N) \) operations.</li>
465+
<li> QFTs reduce complexity to \( O((\log N)^2) \) using quantum gates.</li>
466+
</ol>
467+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
468+
<h2 id="advantage-2-quantum-parallelism">Advantage 2: Quantum Parallelism </h2>
469+
<p>QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously.
470+
This is crucial in algorithms like:
471+
</p>
472+
<ol>
473+
<li> Shor&#8217;s Algorithm for factoring large numbers.</li>
474+
<li> Quantum Phase Estimation (QPE) for eigenvalue extraction.</li>
475+
</ol>
476+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
477+
<h2 id="advantage-3-compact-circuit-implementation">Advantage 3: Compact Circuit Implementation </h2>
478+
479+
<ol>
480+
<li> QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li>
481+
<li> QFTs are highly efficient for <em>quantum hardware</em>.</li>
482+
</ol>
483+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
484+
<h2 id="advantage-4-applications-in-quantum-computing">Advantage 4: Applications in Quantum Computing </h2>
485+
<ol>
486+
<li> \textbf{Shor&#8217;s Algorithm:} Uses QFT to find periodicity in modular exponentiation.</li>
487+
<li> \textbf{Quantum Phase Estimation (QPE):} Extracts eigenvalues of unitary matrices.</li>
488+
<li> \textbf{Quantum Signal Processing:} Enables spectral analysis on quantum data.</li>
489+
</ol>
490+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
491+
<h2 id="advantage-5-reduced-memory-complexity">Advantage 5: Reduced Memory Complexity </h2>
492+
493+
<ol>
494+
<li> Classical DFTs require \( O(N) \) space.</li>
495+
<li> QFTs store Fourier-transformed coefficients <em>implicitly</em> in qubit amplitudes.</li>
496+
<li> Only \( O(n) \) qubits are needed for a size \( N = 2^n \) transformation.</li>
497+
</ol>
498+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
499+
<h2 id="advantage-6-quantum-signal-processing">Advantage 6: Quantum Signal Processing </h2>
500+
<p>QFTs enable applications such as:</p>
501+
<ol>
502+
<li> Quantum spectral analysis.</li>
503+
<li> Quantum image processing.</li>
504+
<li> Quantum filtering and denoising.</li>
505+
</ol>
506+
<p>These can enhance AI, cryptography, and data processing.</p>
507+
424508
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
425509
<h2 id="from-dft-to-qft">From DFT to QFT </h2>
426510

doc/pub/week11/html/week11.html

Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -173,6 +173,34 @@
173173
('Inverse DFT', 2, None, 'inverse-dft'),
174174
('Orthonormality', 2, None, 'orthonormality'),
175175
('Inverse transform', 2, None, 'inverse-transform'),
176+
('QFT, short review from last week',
177+
2,
178+
None,
179+
'qft-short-review-from-last-week'),
180+
('Advantage 1: Exponential Speedup',
181+
2,
182+
None,
183+
'advantage-1-exponential-speedup'),
184+
('Advantage 2: Quantum Parallelism',
185+
2,
186+
None,
187+
'advantage-2-quantum-parallelism'),
188+
('Advantage 3: Compact Circuit Implementation',
189+
2,
190+
None,
191+
'advantage-3-compact-circuit-implementation'),
192+
('Advantage 4: Applications in Quantum Computing',
193+
2,
194+
None,
195+
'advantage-4-applications-in-quantum-computing'),
196+
('Advantage 5: Reduced Memory Complexity',
197+
2,
198+
None,
199+
'advantage-5-reduced-memory-complexity'),
200+
('Advantage 6: Quantum Signal Processing',
201+
2,
202+
None,
203+
'advantage-6-quantum-signal-processing'),
176204
('From DFT to QFT', 2, None, 'from-dft-to-qft'),
177205
('In terms of arbitrary states',
178206
2,
@@ -498,6 +526,62 @@ <h2 id="inverse-transform">Inverse transform </h2>
498526
$$
499527

500528

529+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
530+
<h2 id="qft-short-review-from-last-week">QFT, short review from last week </h2>
531+
532+
<ol>
533+
<li> QFTs are the quantum analogue of the Discrete Fourier Transform (DFT).</li>
534+
<li> They play a crucial role in quantum algorithms like Shor&#8217;s Algorithm and the Quantum Phase Estimation (QPE) algorithm</li>
535+
<li> QFTs provide an <em>exponential speedup</em> over classical Fourier Transform methods.</li>
536+
</ol>
537+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
538+
<h2 id="advantage-1-exponential-speedup">Advantage 1: Exponential Speedup </h2>
539+
<ol>
540+
<li> Classical Discrete Fourier Transforms (DFTs) require \( O(N^2) \) operations.</li>
541+
<li> The Fast Fourier Transforms (FFTs) improve this to \( O(N \log N) \) operations.</li>
542+
<li> QFTs reduce complexity to \( O((\log N)^2) \) using quantum gates.</li>
543+
</ol>
544+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
545+
<h2 id="advantage-2-quantum-parallelism">Advantage 2: Quantum Parallelism </h2>
546+
<p>QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously.
547+
This is crucial in algorithms like:
548+
</p>
549+
<ol>
550+
<li> Shor&#8217;s Algorithm for factoring large numbers.</li>
551+
<li> Quantum Phase Estimation (QPE) for eigenvalue extraction.</li>
552+
</ol>
553+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
554+
<h2 id="advantage-3-compact-circuit-implementation">Advantage 3: Compact Circuit Implementation </h2>
555+
556+
<ol>
557+
<li> QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li>
558+
<li> QFTs are highly efficient for <em>quantum hardware</em>.</li>
559+
</ol>
560+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
561+
<h2 id="advantage-4-applications-in-quantum-computing">Advantage 4: Applications in Quantum Computing </h2>
562+
<ol>
563+
<li> \textbf{Shor&#8217;s Algorithm:} Uses QFT to find periodicity in modular exponentiation.</li>
564+
<li> \textbf{Quantum Phase Estimation (QPE):} Extracts eigenvalues of unitary matrices.</li>
565+
<li> \textbf{Quantum Signal Processing:} Enables spectral analysis on quantum data.</li>
566+
</ol>
567+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
568+
<h2 id="advantage-5-reduced-memory-complexity">Advantage 5: Reduced Memory Complexity </h2>
569+
570+
<ol>
571+
<li> Classical DFTs require \( O(N) \) space.</li>
572+
<li> QFTs store Fourier-transformed coefficients <em>implicitly</em> in qubit amplitudes.</li>
573+
<li> Only \( O(n) \) qubits are needed for a size \( N = 2^n \) transformation.</li>
574+
</ol>
575+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
576+
<h2 id="advantage-6-quantum-signal-processing">Advantage 6: Quantum Signal Processing </h2>
577+
<p>QFTs enable applications such as:</p>
578+
<ol>
579+
<li> Quantum spectral analysis.</li>
580+
<li> Quantum image processing.</li>
581+
<li> Quantum filtering and denoising.</li>
582+
</ol>
583+
<p>These can enhance AI, cryptography, and data processing.</p>
584+
501585
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
502586
<h2 id="from-dft-to-qft">From DFT to QFT </h2>
503587

0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)