|
69 | 69 | ('Inverse DFT', 2, None, 'inverse-dft'), |
70 | 70 | ('Orthonormality', 2, None, 'orthonormality'), |
71 | 71 | ('Inverse transform', 2, None, 'inverse-transform'), |
| 72 | + ('QFT, short review from last week', |
| 73 | + 2, |
| 74 | + None, |
| 75 | + 'qft-short-review-from-last-week'), |
| 76 | + ('Advantage 1: Exponential Speedup', |
| 77 | + 2, |
| 78 | + None, |
| 79 | + 'advantage-1-exponential-speedup'), |
| 80 | + ('Advantage 2: Quantum Parallelism', |
| 81 | + 2, |
| 82 | + None, |
| 83 | + 'advantage-2-quantum-parallelism'), |
| 84 | + ('Advantage 3: Compact Circuit Implementation', |
| 85 | + 2, |
| 86 | + None, |
| 87 | + 'advantage-3-compact-circuit-implementation'), |
| 88 | + ('Advantage 4: Applications in Quantum Computing', |
| 89 | + 2, |
| 90 | + None, |
| 91 | + 'advantage-4-applications-in-quantum-computing'), |
| 92 | + ('Advantage 5: Reduced Memory Complexity', |
| 93 | + 2, |
| 94 | + None, |
| 95 | + 'advantage-5-reduced-memory-complexity'), |
| 96 | + ('Advantage 6: Quantum Signal Processing', |
| 97 | + 2, |
| 98 | + None, |
| 99 | + 'advantage-6-quantum-signal-processing'), |
72 | 100 | ('From DFT to QFT', 2, None, 'from-dft-to-qft'), |
73 | 101 | ('In terms of arbitrary states', |
74 | 102 | 2, |
|
185 | 213 | <!-- navigation toc: --> <li><a href="#inverse-dft" style="font-size: 80%;">Inverse DFT</a></li> |
186 | 214 | <!-- navigation toc: --> <li><a href="#orthonormality" style="font-size: 80%;">Orthonormality</a></li> |
187 | 215 | <!-- navigation toc: --> <li><a href="#inverse-transform" style="font-size: 80%;">Inverse transform</a></li> |
| 216 | + <!-- navigation toc: --> <li><a href="#qft-short-review-from-last-week" style="font-size: 80%;">QFT, short review from last week</a></li> |
| 217 | + <!-- navigation toc: --> <li><a href="#advantage-1-exponential-speedup" style="font-size: 80%;">Advantage 1: Exponential Speedup</a></li> |
| 218 | + <!-- navigation toc: --> <li><a href="#advantage-2-quantum-parallelism" style="font-size: 80%;">Advantage 2: Quantum Parallelism</a></li> |
| 219 | + <!-- navigation toc: --> <li><a href="#advantage-3-compact-circuit-implementation" style="font-size: 80%;">Advantage 3: Compact Circuit Implementation</a></li> |
| 220 | + <!-- navigation toc: --> <li><a href="#advantage-4-applications-in-quantum-computing" style="font-size: 80%;">Advantage 4: Applications in Quantum Computing</a></li> |
| 221 | + <!-- navigation toc: --> <li><a href="#advantage-5-reduced-memory-complexity" style="font-size: 80%;">Advantage 5: Reduced Memory Complexity</a></li> |
| 222 | + <!-- navigation toc: --> <li><a href="#advantage-6-quantum-signal-processing" style="font-size: 80%;">Advantage 6: Quantum Signal Processing</a></li> |
188 | 223 | <!-- navigation toc: --> <li><a href="#from-dft-to-qft" style="font-size: 80%;">From DFT to QFT</a></li> |
189 | 224 | <!-- navigation toc: --> <li><a href="#in-terms-of-arbitrary-states" style="font-size: 80%;">In terms of arbitrary states</a></li> |
190 | 225 | <!-- navigation toc: --> <li><a href="#unitarity" style="font-size: 80%;">Unitarity</a></li> |
@@ -484,6 +519,62 @@ <h2 id="inverse-transform" class="anchor">Inverse transform </h2> |
484 | 519 | $$ |
485 | 520 |
|
486 | 521 |
|
| 522 | +<!-- !split --> |
| 523 | +<h2 id="qft-short-review-from-last-week" class="anchor">QFT, short review from last week </h2> |
| 524 | + |
| 525 | +<ol> |
| 526 | +<li> QFTs are the quantum analogue of the Discrete Fourier Transform (DFT).</li> |
| 527 | +<li> They play a crucial role in quantum algorithms like Shor’s Algorithm and the Quantum Phase Estimation (QPE) algorithm</li> |
| 528 | +<li> QFTs provide an <em>exponential speedup</em> over classical Fourier Transform methods.</li> |
| 529 | +</ol> |
| 530 | +<!-- !split --> |
| 531 | +<h2 id="advantage-1-exponential-speedup" class="anchor">Advantage 1: Exponential Speedup </h2> |
| 532 | +<ol> |
| 533 | +<li> Classical Discrete Fourier Transforms (DFTs) require \( O(N^2) \) operations.</li> |
| 534 | +<li> The Fast Fourier Transforms (FFTs) improve this to \( O(N \log N) \) operations.</li> |
| 535 | +<li> QFTs reduce complexity to \( O((\log N)^2) \) using quantum gates.</li> |
| 536 | +</ol> |
| 537 | +<!-- !split --> |
| 538 | +<h2 id="advantage-2-quantum-parallelism" class="anchor">Advantage 2: Quantum Parallelism </h2> |
| 539 | +<p>QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously. |
| 540 | +This is crucial in algorithms like: |
| 541 | +</p> |
| 542 | +<ol> |
| 543 | +<li> Shor’s Algorithm for factoring large numbers.</li> |
| 544 | +<li> Quantum Phase Estimation (QPE) for eigenvalue extraction.</li> |
| 545 | +</ol> |
| 546 | +<!-- !split --> |
| 547 | +<h2 id="advantage-3-compact-circuit-implementation" class="anchor">Advantage 3: Compact Circuit Implementation </h2> |
| 548 | + |
| 549 | +<ol> |
| 550 | +<li> QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li> |
| 551 | +<li> QFTs are highly efficient for <em>quantum hardware</em>.</li> |
| 552 | +</ol> |
| 553 | +<!-- !split --> |
| 554 | +<h2 id="advantage-4-applications-in-quantum-computing" class="anchor">Advantage 4: Applications in Quantum Computing </h2> |
| 555 | +<ol> |
| 556 | +<li> \textbf{Shor’s Algorithm:} Uses QFT to find periodicity in modular exponentiation.</li> |
| 557 | +<li> \textbf{Quantum Phase Estimation (QPE):} Extracts eigenvalues of unitary matrices.</li> |
| 558 | +<li> \textbf{Quantum Signal Processing:} Enables spectral analysis on quantum data.</li> |
| 559 | +</ol> |
| 560 | +<!-- !split --> |
| 561 | +<h2 id="advantage-5-reduced-memory-complexity" class="anchor">Advantage 5: Reduced Memory Complexity </h2> |
| 562 | + |
| 563 | +<ol> |
| 564 | +<li> Classical DFTs require \( O(N) \) space.</li> |
| 565 | +<li> QFTs store Fourier-transformed coefficients <em>implicitly</em> in qubit amplitudes.</li> |
| 566 | +<li> Only \( O(n) \) qubits are needed for a size \( N = 2^n \) transformation.</li> |
| 567 | +</ol> |
| 568 | +<!-- !split --> |
| 569 | +<h2 id="advantage-6-quantum-signal-processing" class="anchor">Advantage 6: Quantum Signal Processing </h2> |
| 570 | +<p>QFTs enable applications such as:</p> |
| 571 | +<ol> |
| 572 | +<li> Quantum spectral analysis.</li> |
| 573 | +<li> Quantum image processing.</li> |
| 574 | +<li> Quantum filtering and denoising.</li> |
| 575 | +</ol> |
| 576 | +<p>These can enhance AI, cryptography, and data processing.</p> |
| 577 | + |
487 | 578 | <!-- !split --> |
488 | 579 | <h2 id="from-dft-to-qft" class="anchor">From DFT to QFT </h2> |
489 | 580 |
|
|
0 commit comments