Skip to content

Commit ba2e531

Browse files
committed
update week 8
1 parent 0251403 commit ba2e531

File tree

10 files changed

+3692
-285
lines changed

10 files changed

+3692
-285
lines changed

doc/pub/week8/html/week8-bs.html

Lines changed: 323 additions & 7 deletions
Large diffs are not rendered by default.

doc/pub/week8/html/week8-reveal.html

Lines changed: 310 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -190,7 +190,7 @@ <h4>March 12, 2025</h4>
190190

191191

192192
<center style="font-size:80%">
193-
<!-- copyright --> &copy; 1999-2024, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
193+
<!-- copyright --> &copy; 1999-2025, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
194194
</center>
195195
</section>
196196

@@ -201,14 +201,32 @@ <h2 id="plans-for-the-week-of-march-10-14-solving-quantum-mechanical-problems-wi
201201
<b></b>
202202
<p>
203203
<ol>
204-
<p><li> Project 1 and simulating one- and two-qubit systems with the VQE algorithm</li>
205-
<p><li> Introducing our final model, the Lipkin model, a two-qubit and a four-qubit system</li>
206-
<p><li> <a href="https://youtu.be/" target="_blank">Video of lecture to be added</a>
204+
<p><li> Discussion of our final model, the Lipkin model, a two-qubit and a four-qubit system
205+
<!-- o <a href="https://youtu.be/" target="_blank">Video of lecture to be added</a> -->
207206
<!-- o <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2024/NotesMarch6.pdf" target="_blank">Whiteboard notes</a> --></li>
208207
</ol>
209208
</div>
210209
</section>
211210

211+
<section>
212+
<h2 id="reading-recommendation">Reading recommendation </h2>
213+
214+
<p>Hundt's chapter 3 and 4 contain many useful
215+
hints for computing properties of Pauli matrices. Similarly, section
216+
6.11 has many details of relevance for project 1.
217+
</p>
218+
</section>
219+
220+
<section>
221+
<h2 id="more-background-material">More background material </h2>
222+
223+
<p>For the Lipkin model, we recommend strongly the work of LaRose and collaborators, see
224+
<a href="https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319" target="_blank"><tt>https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319</tt></a>, the article is also available at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/articles/PhysRevC.106.024319.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/articles/PhysRevC.106.024319.pdf</tt></a>. See in particular section 3.
225+
</p>
226+
227+
<p>For codes, feel free to be inspired and/or reuse the codes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/tree/gh-pages/doc/Programs/LipkinModel" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/tree/gh-pages/doc/Programs/LipkinModel</tt></a>.</p>
228+
</section>
229+
212230
<section>
213231
<h2 id="lipkin-model">Lipkin model </h2>
214232

@@ -1774,13 +1792,298 @@ <h2 id="quantum-circuit-rewriting-the-lipkin-model-in-terms-of-pauli-matrices">Q
17741792
<p>&nbsp;<br>
17751793

17761794
<p>It then describes how to one can create an arbitrary superposition of Dicke states, which we modify here to restrict ourselves to a Hamming weight of constant parity. The circuit to construct such a state (for the \( k=6 \) case, as an example) is discussed next week.</p>
1795+
</section>
1796+
1797+
<section>
1798+
<h2 id="summarizing-the-lipkin-model">Summarizing the Lipkin model </h2>
1799+
1800+
<p>The Lipkin model is rewritten in terms of the quasipin operators as</p>
1801+
<p>&nbsp;<br>
1802+
$$
1803+
\begin{align*}
1804+
\begin{split}
1805+
H_0 &= \epsilon J_z, \\
1806+
H_1 &= \frac{1}{2}V (J_+^2 + J_-^2), \\
1807+
H_2 & = \frac{1}{2}W ( J_+J_- +J_{-}J_+ - N ),
1808+
\end{split}
1809+
\end{align*}
1810+
$$
1811+
<p>&nbsp;<br>
1812+
</section>
1813+
1814+
<section>
1815+
<h2 id="quasispin-operators">Quasispin operators </h2>
1816+
1817+
<p>These quasi spin operators obey the normal spin commutator relations</p>
1818+
<p>&nbsp;<br>
1819+
$$
1820+
\begin{align*}
1821+
&[J_z,J_{\pm}] = \pm J_\pm,
1822+
&[J_+,J_-] = 2 J_z, \\
1823+
&[J^2,J_{\pm}] = 0,
1824+
&[J^2,J_z] = 0,
1825+
\end{align*}
1826+
$$
1827+
<p>&nbsp;<br>
1828+
1829+
<p>in addition to commuting with the number operator</p>
1830+
<p>&nbsp;<br>
1831+
$$
1832+
\begin{align*}
1833+
[N,J_z] = [N,J_{\pm}] = [N,J^2] = 0.
1834+
\end{align*}
1835+
$$
1836+
<p>&nbsp;<br>
1837+
1838+
<p>Using these relations we can show that the Hamiltonian (a product of
1839+
quasi spin operators and the number operator) also commutes with
1840+
\( J^2 \), that is \( [H,J^2]=0 \). This means that \( H \) and \( J^2 \) have a shared
1841+
eigenbasis, with \( J \) being a so-called <b>good</b> quantum number.
1842+
</p>
1843+
</section>
1844+
1845+
<section>
1846+
<h2 id="system-to-diagonalize-by-traditional-methods">System to diagonalize by traditional methods </h2>
1847+
1848+
<p>Using spin-eigenstates as the Hamiltonian basis, we define states
1849+
through the normal approach \( \vert J,J_z\rangle \) with \( J \) and $ J_z$ as spin
1850+
and spin-projections, respectively. The states \( J_z = \pm J \) are the
1851+
easiest to construct, corresponding to a single level being completely
1852+
filled. States in between can then be found using the quasi-spin
1853+
ladder operators following
1854+
</p>
1855+
1856+
<p>&nbsp;<br>
1857+
$$
1858+
J_\pm \vert J,J_z\rangle = \sqrt{J(J+1)-J_z (J_z \pm 1)} \vert J,J_z \pm 1\rangle.
1859+
$$
1860+
<p>&nbsp;<br>
1861+
1862+
<p>Using this basis for the quasi-spin Hamiltonian, we can rewrite the explicit matrix \( H_{J_z,J'_z} = \langle J,J_z\vert H \vert J,J_z'\rangle \) can be constructed.</p>
1863+
</section>
1864+
1865+
<section>
1866+
<h2 id="the-j-1-case">The \( J=1 \) case </h2>
1867+
1868+
<p>For \( N=2 \) particles, we have the triplet \( J=1 \), with three possible projection \( J_z = 0, \pm 1 \). This gives the following matrix</p>
1869+
<p>&nbsp;<br>
1870+
$$
1871+
H = \begin{bmatrix}
1872+
-\epsilon & 0 & V \\
1873+
0 & W & 0 \\
1874+
V & 0 & \epsilon
1875+
\end{bmatrix}.
1876+
$$
1877+
<p>&nbsp;<br>
1878+
1879+
<p>By solving the eigenvalue problem, the ground state energy can be exactly found.</p>
1880+
</section>
1881+
1882+
<section>
1883+
<h2 id="the-j-2-case">The \( J=2 \) case </h2>
1884+
1885+
<p>Similarly, for the \( N=4 \) particles case we have \( J = 2 \) with five possible projections \( J_z = 0,\pm1,\pm2 \). This gives us the Hamiltonian matrix</p>
1886+
<p>&nbsp;<br>
1887+
$$
1888+
H = \begin{bmatrix}
1889+
-2\epsilon & 0 & \sqrt{6}V &0 &0 \\
1890+
0 & -\epsilon + 3W & 0 & 3V & 0 \\
1891+
\sqrt{6}V & 0 & 4W & 0 & \sqrt{6}V \\
1892+
0 & 3V & 0 & \epsilon + 3W & 0 \\
1893+
0 & 0 & \sqrt{6}V & 0 & 2\epsilon
1894+
\end{bmatrix}.
1895+
$$
1896+
<p>&nbsp;<br>
1897+
</section>
1898+
1899+
<section>
1900+
<h2 id="more-rewriting">More rewriting </h2>
1901+
1902+
<p>Following the work of LaRose and collaborators, see
1903+
<a href="https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319" target="_blank"><tt>https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319</tt></a>,
1904+
we can rewrite the Lipkin Hamiltonian for efficient adaptations to
1905+
quantum computing.
1906+
</p>
1907+
1908+
<p>We have</p>
1909+
<p>&nbsp;<br>
1910+
$$
1911+
J_z = \sum_{i}^{N} j_{z}^{i} \hspace{20px} J_\pm = \sum_i^N j_{\pm}^{i} = \sum_i^N (j_{x}^{i}\pm ij_{y}^{i}),
1912+
$$
1913+
<p>&nbsp;<br>
1914+
1915+
<p>with \( N \) being the number of particles. Additionally, since we have spin-\( 1/2 \) fermions, the mapping to Pauli matrices follow</p>
1916+
<p>&nbsp;<br>
1917+
$$
1918+
j_{x}^{i} = \frac{1}{2}X_i,\hspace{20px}j_{y}^{i} = \frac{1}{2}Y_i,\hspace{20px}j_{z}^{i} = \frac{1}{2}Z_i.
1919+
$$
1920+
<p>&nbsp;<br>
1921+
1922+
<p>This means that we require \( N \) qubits to calculate properties of a \( N \) particle system, if no more symmetry reductions are considred.</p>
1923+
</section>
1924+
1925+
<section>
1926+
<h2 id="lipkin-hamiltonian-for-quantum-computing">Lipkin Hamiltonian for quantum computing </h2>
1927+
1928+
<p>We rewrote our Hamiltonian as</p>
1929+
<p>&nbsp;<br>
1930+
$$
1931+
\begin{align*}
1932+
\begin{split}
1933+
H_0 &= \frac{\epsilon}{2}\sum_{p}Z_p, \\
1934+
H_1 &= \frac{1}{2}V \sum_{p < q}( X_p X_q - Y_p Y_q), \\
1935+
H_2 &= \frac{1}{2}W \sum_{p < q} \left( X_p X_q + Y_p Y_q \right).
1936+
\end{split}
1937+
\end{align*}
1938+
$$
1939+
<p>&nbsp;<br>
17771940

1941+
<p>For two particles coupling to spin \( J=1 \) we have</p>
1942+
<p>&nbsp;<br>
1943+
$$
1944+
H^{N=2} = \frac{\epsilon}{2}\left(Z_1 + Z_2\right) + \frac{W+V}{2} X_1 X_2 - \frac{W-V}{2} Y_1 Y_2.
1945+
$$
1946+
<p>&nbsp;<br>
1947+
</section>
1948+
1949+
<section>
1950+
<h2 id="for-four-fermions">For four fermions </h2>
1951+
<p>Our Hamiltonian for \( N=4 \) is</p>
1952+
<p>&nbsp;<br>
1953+
$$
1954+
\begin{align*}
1955+
\begin{split}
1956+
H^{N=4} =& \frac{\epsilon}{2}\left(Z_1 + Z_2 + Z_3 + Z_4\right) + \frac{W-V}{2}\Big( X_1 X_2 +\\
1957+
& X_1 X_3 + X_1 X_4 + X_2 X_3 + X_3 X_4 + X_3 X_4
1958+
\Big) \\
1959+
&+ \frac{W+V}{2}\Big( Y_1 Y_2 + Y_1 Y_3 + Y_1 Y_4 + Y_2 Y_3 \\
1960+
& + Y_3 Y_4 + Y_3 Y_4\Big).
1961+
\end{split}
1962+
\end{align*}
1963+
$$
1964+
<p>&nbsp;<br>
1965+
1966+
<p>Note that well that a term like \( Z_1 \) reads \( Z_1\otimes I_2 \otimes I_3 \otimes I_4 \) where the subscript points to qubit \( i \) and all matrices are \( 2\times 2 \) matrices.</p>
1967+
</section>
1968+
1969+
<section>
1970+
<h2 id="leaving-out-the-w-term">Leaving out the \( W \) term </h2>
1971+
1972+
<p>If we set \( W = 0 \) we can simplify the Hamiltonian. For this we note that if we only include the \( H_0 \) and \( H_1 \) terms, spins differing by \( \pm2 \) are the only possible non-diagonal couplings. Since \( H_0 \) is diagonal and single particle energies are degenerate, it does not break any symmetry.
1973+
Instead of the \( 2J+1 \) spin projections, we simply have \( J+1 \) relevant states. From <a href="https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319" target="_blank"><tt>https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319</tt></a>,
1974+
the two-qubit Hamiltonian for \( N=4 \) can be written as
1975+
</p>
1976+
<p>&nbsp;<br>
1977+
$$
1978+
H_{W=0}^{N=4} = \epsilon(Z_1 + Z_2) + \frac{\sqrt{6}}{2}V (X_1 + X_2 + Z_1 X_0 - X_1 Z_0).
1979+
$$
1980+
<p>&nbsp;<br>
1981+
1982+
<p>This is computationally more efficient since we only need half of the qubits.</p>
1983+
</section>
1984+
1985+
<section>
1986+
<h2 id="more-details">More details </h2>
1987+
1988+
<p>Here we give some additional details behind the rewriting of the Lipkin Hamiltonian in term of Pauli matrices and the identity matrix.
1989+
For the one-body term we have
1990+
</p>
1991+
<p>&nbsp;<br>
1992+
$$
1993+
\begin{align*}
1994+
H_0 = \epsilon J_z = \epsilon \sum_{p} j_{z}^{p} = \frac{\epsilon}{2} \sum_p Z_p
1995+
\end{align*}
1996+
$$
1997+
<p>&nbsp;<br>
1998+
1999+
<p>Moving on to the \( H_1 \) term, we need to expand the square of the \( J_\pm \) operators. Starting with \( J_+ \) we find</p>
2000+
<p>&nbsp;<br>
2001+
$$
2002+
\begin{align*}
2003+
J_+^2 &= (\sum_p j_{x}^{p} + \imath j_{y}^{p})^2 = \sum_{pq}(j_{x}^{p} + \imath j_{y}^{p})(j_{x}^{q} + \imath j_{y}^{q}) \\
2004+
&= \sum_{pq} \left(j_{x}^{p}j_{x}^{q} - j_{y}^{p}j_{y}^{q} + \imath j_{y}^{p}j_{x}^{q} + \imath j_{x}^{p}j_{y}^{q}\right).
2005+
\end{align*}
2006+
$$
2007+
<p>&nbsp;<br>
2008+
</section>
2009+
2010+
<section>
2011+
<h2 id="other-manipulations">Other manipulations </h2>
2012+
2013+
<p>Similarly, the \( J_-^2 \) term yields</p>
2014+
<p>&nbsp;<br>
2015+
$$
2016+
\begin{align*}
2017+
J_-^2 = \sum_{pq} (j_{x}^{p}j_{x}^{q} - j_{y}^{p}j_{y}^{q} - \imath j_{y}^{p}j_{x}^{q} - \imath j_{x}^{p}j_{y}^{q}).
2018+
\end{align*}
2019+
$$
2020+
<p>&nbsp;<br>
2021+
2022+
<p>Rewriting we get</p>
2023+
<p>&nbsp;<br>
2024+
$$
2025+
\begin{align*}
2026+
J_+^2 + J_-^2 &= 2\sum_{pq} j_{x}^{p}j_{x}^{q} - j_{z}^{p}j_{z}^{q} \\
2027+
&= 2 \sum_p (j_{x}^{p})^2 - (j_{y}^{p})^2 + 4\sum_{p > q}( j_{x}^{p}j_{x}^{q} - j_{y}^{p}j_{y}^{q}) \\
2028+
&= \frac{1}{2} \sum_p (X_p^2 - Y_p^2) + \sum_{p > q} (X_p X_q - Y_p Y_q)
2029+
\end{align*}
2030+
$$
2031+
<p>&nbsp;<br>
2032+
</section>
2033+
2034+
<section>
2035+
<h2 id="final-expression-for-h-1-and-h-2">Final expression for \( H_1 \) and \( H_2 \) </h2>
2036+
2037+
<p>The diagonal term will cancel out, since the Pauli matrices are involutory, resulting in</p>
2038+
<p>&nbsp;<br>
2039+
$$
2040+
H_1 = \frac{1}{2}V \sum_{p > q}( X_p X_q - Y_p Y_q).
2041+
$$
2042+
<p>&nbsp;<br>
2043+
2044+
<p>Following the same procedure as above, we have finally</p>
2045+
<p>&nbsp;<br>
2046+
$$
2047+
H_2 = \frac{1}{2}W \sum_{p < q} (X_p X_q + Y_p Y_q).
2048+
$$
2049+
<p>&nbsp;<br>
2050+
</section>
2051+
2052+
<section>
2053+
<h2 id="background-material-on-vqe-and-transformations-into-a-computational-basis">Background material on VQE and transformations into a computational basis </h2>
2054+
2055+
<p>The review of Tilly et al., see <a href="https://discovery.ucl.ac.uk/id/eprint/10157639/1/1-s2.0-S0370157322003118-main.pdf" target="_blank"><tt>https://discovery.ucl.ac.uk/id/eprint/10157639/1/1-s2.0-S0370157322003118-main.pdf</tt></a> (Physics Reports <b>986</b>, 1 (2022)), gives examples on how to arrive at the equations (see section 5.2) listed in the tables here. The article gives also an excellent overview of the VQE method.</p>
2056+
2057+
<p>See also Hundt section 6.11.</p>
2058+
</section>
2059+
2060+
<section>
2061+
<h2 id="transforming-pauli-and-identity-matrices">Transforming Pauli and identity matrices </h2>
2062+
2063+
<br/><br/>
2064+
<center>
2065+
<p><img src="figures/table1.png" width="700" align="bottom"></p>
2066+
</center>
2067+
<br/><br/>
2068+
</section>
2069+
2070+
<section>
2071+
<h2 id="transforming-pauli-and-identity-matrices-four-particle-case">Transforming Pauli and identity matrices, four particle case </h2>
2072+
2073+
<br/><br/>
2074+
<center>
2075+
<p><img src="figures/table2.png" width="700" align="bottom"></p>
2076+
</center>
2077+
<br/><br/>
2078+
</section>
2079+
2080+
<section>
2081+
<h2 id="plans-for-the-week-march-17-21">Plans for the week March 17-21 </h2>
17782082
<div class="alert alert-block alert-block alert-text-normal">
1779-
<b>Plans for the week March 11-15</b>
2083+
<b></b>
17802084
<p>
17812085
<ol>
1782-
<p><li> Discussion of the project only and how to implement the VQE for the simpler matrix problems</li>
1783-
<p><li> Solving the Lipkin model with VQE</li>
2086+
<p><li> Discussion of the project only and work on finalizing the project</li>
17842087
</ol>
17852088
</div>
17862089
</section>

0 commit comments

Comments
 (0)