You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
hints for computing properties of Pauli matrices. Similarly, section
216
+
6.11 has many details of relevance for project 1.
217
+
</p>
218
+
</section>
219
+
220
+
<section>
221
+
<h2id="more-background-material">More background material </h2>
222
+
223
+
<p>For the Lipkin model, we recommend strongly the work of LaRose and collaborators, see
224
+
<ahref="https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319" target="_blank"><tt>https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319</tt></a>, the article is also available at <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/articles/PhysRevC.106.024319.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/articles/PhysRevC.106.024319.pdf</tt></a>. See in particular section 3.
225
+
</p>
226
+
227
+
<p>For codes, feel free to be inspired and/or reuse the codes at <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/tree/gh-pages/doc/Programs/LipkinModel" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/tree/gh-pages/doc/Programs/LipkinModel</tt></a>.</p>
<p>It then describes how to one can create an arbitrary superposition of Dicke states, which we modify here to restrict ourselves to a Hamming weight of constant parity. The circuit to construct such a state (for the \( k=6 \) case, as an example) is discussed next week.</p>
1795
+
</section>
1796
+
1797
+
<section>
1798
+
<h2id="summarizing-the-lipkin-model">Summarizing the Lipkin model </h2>
1799
+
1800
+
<p>The Lipkin model is rewritten in terms of the quasipin operators as</p>
<p>Using this basis for the quasi-spin Hamiltonian, we can rewrite the explicit matrix \( H_{J_z,J'_z} = \langle J,J_z\vert H \vert J,J_z'\rangle \) can be constructed.</p>
1863
+
</section>
1864
+
1865
+
<section>
1866
+
<h2id="the-j-1-case">The \( J=1 \) case </h2>
1867
+
1868
+
<p>For \( N=2 \) particles, we have the triplet \( J=1 \), with three possible projection \( J_z = 0, \pm 1 \). This gives the following matrix</p>
1869
+
<p> <br>
1870
+
$$
1871
+
H = \begin{bmatrix}
1872
+
-\epsilon & 0 & V \\
1873
+
0 & W & 0 \\
1874
+
V & 0 & \epsilon
1875
+
\end{bmatrix}.
1876
+
$$
1877
+
<p> <br>
1878
+
1879
+
<p>By solving the eigenvalue problem, the ground state energy can be exactly found.</p>
1880
+
</section>
1881
+
1882
+
<section>
1883
+
<h2id="the-j-2-case">The \( J=2 \) case </h2>
1884
+
1885
+
<p>Similarly, for the \( N=4 \) particles case we have \( J = 2 \) with five possible projections \( J_z = 0,\pm1,\pm2 \). This gives us the Hamiltonian matrix</p>
1886
+
<p> <br>
1887
+
$$
1888
+
H = \begin{bmatrix}
1889
+
-2\epsilon & 0 & \sqrt{6}V &0 &0 \\
1890
+
0 & -\epsilon + 3W & 0 & 3V & 0 \\
1891
+
\sqrt{6}V & 0 & 4W & 0 & \sqrt{6}V \\
1892
+
0 & 3V & 0 & \epsilon + 3W & 0 \\
1893
+
0 & 0 & \sqrt{6}V & 0 & 2\epsilon
1894
+
\end{bmatrix}.
1895
+
$$
1896
+
<p> <br>
1897
+
</section>
1898
+
1899
+
<section>
1900
+
<h2id="more-rewriting">More rewriting </h2>
1901
+
1902
+
<p>Following the work of LaRose and collaborators, see
<p>Note that well that a term like \( Z_1 \) reads \( Z_1\otimes I_2 \otimes I_3 \otimes I_4 \) where the subscript points to qubit \( i \) and all matrices are \( 2\times 2 \) matrices.</p>
1967
+
</section>
1968
+
1969
+
<section>
1970
+
<h2id="leaving-out-the-w-term">Leaving out the \( W \) term </h2>
1971
+
1972
+
<p>If we set \( W = 0 \) we can simplify the Hamiltonian. For this we note that if we only include the \( H_0 \) and \( H_1 \) terms, spins differing by \( \pm2 \) are the only possible non-diagonal couplings. Since \( H_0 \) is diagonal and single particle energies are degenerate, it does not break any symmetry.
1973
+
Instead of the \( 2J+1 \) spin projections, we simply have \( J+1 \) relevant states. From <ahref="https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319" target="_blank"><tt>https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.024319</tt></a>,
1974
+
the two-qubit Hamiltonian for \( N=4 \) can be written as
<p>Following the same procedure as above, we have finally</p>
2045
+
<p> <br>
2046
+
$$
2047
+
H_2 = \frac{1}{2}W \sum_{p <q}(X_pX_q+Y_pY_q).
2048
+
$$
2049
+
<p> <br>
2050
+
</section>
2051
+
2052
+
<section>
2053
+
<h2id="background-material-on-vqe-and-transformations-into-a-computational-basis">Background material on VQE and transformations into a computational basis </h2>
2054
+
2055
+
<p>The review of Tilly et al., see <ahref="https://discovery.ucl.ac.uk/id/eprint/10157639/1/1-s2.0-S0370157322003118-main.pdf" target="_blank"><tt>https://discovery.ucl.ac.uk/id/eprint/10157639/1/1-s2.0-S0370157322003118-main.pdf</tt></a> (Physics Reports <b>986</b>, 1 (2022)), gives examples on how to arrive at the equations (see section 5.2) listed in the tables here. The article gives also an excellent overview of the VQE method.</p>
2056
+
2057
+
<p>See also Hundt section 6.11.</p>
2058
+
</section>
2059
+
2060
+
<section>
2061
+
<h2id="transforming-pauli-and-identity-matrices">Transforming Pauli and identity matrices </h2>
0 commit comments