|
41 | 41 | 2, |
42 | 42 | None, |
43 | 43 | 'plans-for-the-week-of-february-3-7-entanglement-entropies-and-density-matrices'), |
44 | | - ('Motivation', 2, None, 'motivation'), |
45 | 44 | ('Reminder on density matrices and traces', |
46 | 45 | 2, |
47 | 46 | None, |
|
66 | 65 | ('Examples of entanglement', 2, None, 'examples-of-entanglement'), |
67 | 66 | ('Ground state of helium', 2, None, 'ground-state-of-helium'), |
68 | 67 | ('Maximally entangled', 2, None, 'maximally-entangled'), |
69 | | - ('Schmidt decomposition', 2, None, 'schmidt-decomposition'), |
70 | | - ('Pure states and Schmidt decomposition', |
71 | | - 2, |
72 | | - None, |
73 | | - 'pure-states-and-schmidt-decomposition'), |
74 | | - ('Proof of Schmidt decomposition', |
75 | | - 2, |
76 | | - None, |
77 | | - 'proof-of-schmidt-decomposition'), |
78 | | - ('Further parts of proof', 2, None, 'further-parts-of-proof'), |
79 | | - ('SVD parts in proof', 2, None, 'svd-parts-in-proof'), |
80 | | - ('Slight rewrite', 2, None, 'slight-rewrite'), |
81 | | - ('Different dimensionalities', |
82 | | - 2, |
83 | | - None, |
84 | | - 'different-dimensionalities'), |
85 | 68 | ('Entropies and density matrices', |
86 | 69 | 2, |
87 | 70 | None, |
|
95 | 78 | 'exercise', |
96 | 79 | 2, |
97 | 80 | None, |
98 | | - 'two-qubit-system-and-calculation-of-density-matrices-and-exercise'), |
99 | | - ('Exercise 1: Two-qubit Hamiltonian', |
100 | | - 2, |
101 | | - None, |
102 | | - 'exercise-1-two-qubit-hamiltonian'), |
103 | | - ('The next lecture', 2, None, 'the-next-lecture')]} |
| 81 | + 'two-qubit-system-and-calculation-of-density-matrices-and-exercise')]} |
104 | 82 | end of tocinfo --> |
105 | 83 |
|
106 | 84 | <body> |
|
136 | 114 | <a href="#" class="dropdown-toggle" data-toggle="dropdown">Contents <b class="caret"></b></a> |
137 | 115 | <ul class="dropdown-menu"> |
138 | 116 | <!-- navigation toc: --> <li><a href="#plans-for-the-week-of-february-3-7-entanglement-entropies-and-density-matrices" style="font-size: 80%;">Plans for the week of February 3-7: Entanglement, entropies and density matrices</a></li> |
139 | | - <!-- navigation toc: --> <li><a href="#motivation" style="font-size: 80%;">Motivation</a></li> |
140 | 117 | <!-- navigation toc: --> <li><a href="#reminder-on-density-matrices-and-traces" style="font-size: 80%;">Reminder on density matrices and traces</a></li> |
141 | 118 | <!-- navigation toc: --> <li><a href="#definition-of-density-matrix" style="font-size: 80%;">Definition of density matrix</a></li> |
142 | 119 | <!-- navigation toc: --> <li><a href="#first-entanglement-encounter-two-qubit-system" style="font-size: 80%;">First entanglement encounter, two qubit system</a></li> |
|
152 | 129 | <!-- navigation toc: --> <li><a href="#examples-of-entanglement" style="font-size: 80%;">Examples of entanglement</a></li> |
153 | 130 | <!-- navigation toc: --> <li><a href="#ground-state-of-helium" style="font-size: 80%;">Ground state of helium</a></li> |
154 | 131 | <!-- navigation toc: --> <li><a href="#maximally-entangled" style="font-size: 80%;">Maximally entangled</a></li> |
155 | | - <!-- navigation toc: --> <li><a href="#schmidt-decomposition" style="font-size: 80%;">Schmidt decomposition</a></li> |
156 | | - <!-- navigation toc: --> <li><a href="#pure-states-and-schmidt-decomposition" style="font-size: 80%;">Pure states and Schmidt decomposition</a></li> |
157 | | - <!-- navigation toc: --> <li><a href="#proof-of-schmidt-decomposition" style="font-size: 80%;">Proof of Schmidt decomposition</a></li> |
158 | | - <!-- navigation toc: --> <li><a href="#further-parts-of-proof" style="font-size: 80%;">Further parts of proof</a></li> |
159 | | - <!-- navigation toc: --> <li><a href="#svd-parts-in-proof" style="font-size: 80%;">SVD parts in proof</a></li> |
160 | | - <!-- navigation toc: --> <li><a href="#slight-rewrite" style="font-size: 80%;">Slight rewrite</a></li> |
161 | | - <!-- navigation toc: --> <li><a href="#different-dimensionalities" style="font-size: 80%;">Different dimensionalities</a></li> |
162 | 132 | <!-- navigation toc: --> <li><a href="#entropies-and-density-matrices" style="font-size: 80%;">Entropies and density matrices</a></li> |
163 | 133 | <!-- navigation toc: --> <li><a href="#shannon-information-entropy" style="font-size: 80%;">Shannon information entropy</a></li> |
164 | 134 | <!-- navigation toc: --> <li><a href="#von-neumann-entropy" style="font-size: 80%;">Von Neumann entropy</a></li> |
165 | 135 | <!-- navigation toc: --> <li><a href="#two-qubit-system-and-calculation-of-density-matrices-and-exercise" style="font-size: 80%;">Two-qubit system and calculation of density matrices and exercise</a></li> |
166 | | - <!-- navigation toc: --> <li><a href="#exercise-1-two-qubit-hamiltonian" style="font-size: 80%;">Exercise 1: Two-qubit Hamiltonian</a></li> |
167 | | - <!-- navigation toc: --> <li><a href="#the-next-lecture" style="font-size: 80%;">The next lecture</a></li> |
168 | 136 |
|
169 | 137 | </ul> |
170 | 138 | </li> |
@@ -204,35 +172,17 @@ <h2 id="plans-for-the-week-of-february-3-7-entanglement-entropies-and-density-ma |
204 | 172 | <div class="panel-body"> |
205 | 173 | <!-- subsequent paragraphs come in larger fonts, so start with a paragraph --> |
206 | 174 | <ol> |
207 | | -<li> Reminder and review of density matrices and measurements from last week</li> |
208 | | -<li> Schmidt decomposition and entanglement</li> |
| 175 | +<li> Reminder and review of density matrices and measurements from last week |
| 176 | +<!-- Postpone thiso Schmidt decomposition and entanglement --></li> |
209 | 177 | <li> Discussion of entropies, classical information entropy (Shannon entropy) and von Neumann entropy</li> |
210 | | -<li> Single and two-qubit gates</li> |
| 178 | +<li> Single-qubit and two-qubit gates and codes</li> |
211 | 179 | <li> <a href="https://youtu.be/" target="_self">Video of lecture to be added</a> |
212 | 180 | <!-- Chapters 3 and 4 of Scherer's text contains useful discussions of several of these topics. More reading suggestions will be added. --></li> |
213 | 181 | </ol> |
214 | 182 | </div> |
215 | 183 | </div> |
216 | 184 |
|
217 | 185 |
|
218 | | -<!-- !split --> |
219 | | -<h2 id="motivation" class="anchor">Motivation </h2> |
220 | | - |
221 | | -<p>In order to study entanglement and why it is so important for quantum |
222 | | -computing, we need to introduce some basic measures and useful |
223 | | -quantities. For these endeavors, we will use our two-qubit system from |
224 | | -the second lecture in order to introduce and repeat, through examples, density |
225 | | -matrices and entropy. These two quantities, together with |
226 | | -technicalities like the Schmidt decomposition define important quantities in analyzing quantum computing examples. |
227 | | -</p> |
228 | | - |
229 | | -<p>The Schmidt decomposition is again a |
230 | | -linear decomposition which allows us to express a vector in terms of |
231 | | -tensor product of two inner product spaces. In quantum information |
232 | | -theory and quantum computing it is widely used as away to define and |
233 | | -describe entanglement. |
234 | | -</p> |
235 | | - |
236 | 186 | <!-- !split --> |
237 | 187 | <h2 id="reminder-on-density-matrices-and-traces" class="anchor">Reminder on density matrices and traces </h2> |
238 | 188 |
|
@@ -492,113 +442,6 @@ <h2 id="maximally-entangled" class="anchor">Maximally entangled </h2> |
492 | 442 | $$ |
493 | 443 |
|
494 | 444 |
|
495 | | -<!-- !split --> |
496 | | -<h2 id="schmidt-decomposition" class="anchor">Schmidt decomposition </h2> |
497 | | -<p>If we cannot write the density matrix in this form, we say the system |
498 | | -\( AB \) is entangled. In order to see this, we can use the so-called |
499 | | -Schmidt decomposition, which is essentially an application of the |
500 | | -singular-value decomposition. |
501 | | -</p> |
502 | | - |
503 | | -<!-- !split --> |
504 | | -<h2 id="pure-states-and-schmidt-decomposition" class="anchor">Pure states and Schmidt decomposition </h2> |
505 | | - |
506 | | -<p>The Schmidt decomposition allows us to define a pure state in a |
507 | | -bipartite Hilbert space composed of systems \( A \) and \( B \) as |
508 | | -</p> |
509 | | - |
510 | | -$$ |
511 | | -\vert\psi\rangle=\sum_{i=0}^{d-1}\sigma_i\vert i\rangle_A\vert i\rangle_B, |
512 | | -$$ |
513 | | - |
514 | | -<p>where the amplitudes \( \sigma_i \) are real and positive and their |
515 | | -squared values sum up to one, \( \sum_i\sigma_i^2=1 \). The states \( \vert |
516 | | -i\rangle_A \) and \( \vert i\rangle_B \) form orthornormal bases for systems |
517 | | -\( A \) and \( B \) respectively, the amplitudes \( \lambda_i \) are the so-called |
518 | | -Schmidt coefficients and the Schmidt rank \( d \) is equal to the number |
519 | | -of Schmidt coefficients and is smaller or equal to the minimum |
520 | | -dimensionality of system \( A \) and system \( B \), that is \( d\leq |
521 | | -\mathrm{min}(\mathrm{dim}(A), \mathrm{dim}(B)) \). |
522 | | -</p> |
523 | | - |
524 | | -<!-- !split --> |
525 | | -<h2 id="proof-of-schmidt-decomposition" class="anchor">Proof of Schmidt decomposition </h2> |
526 | | - |
527 | | -<p>The proof for the above decomposition is based on the singular-value |
528 | | -decomposition. To see this, assume that we have two orthonormal bases |
529 | | -sets for systems \( A \) and \( B \), respectively. That is we have two ONBs |
530 | | -\( \vert i\rangle_A \) and \( \vert j\rangle_B \). We can always construct a |
531 | | -product state (a pure state) as |
532 | | -</p> |
533 | | - |
534 | | -$$ \vert\psi \rangle = \sum_{ij} c_{ij}\vert i\rangle_A\vert |
535 | | -j\rangle_B, |
536 | | -$$ |
537 | | - |
538 | | -<p>where the coefficients \( c_{ij} \) are the overlap coefficients which |
539 | | -belong to a matrix \( \boldsymbol{C} \). |
540 | | -</p> |
541 | | - |
542 | | -<!-- !split --> |
543 | | -<h2 id="further-parts-of-proof" class="anchor">Further parts of proof </h2> |
544 | | - |
545 | | -<p>If we now assume that the |
546 | | -dimensionalities of the two subsystems \( A \) and \( B \) are the same \( d \), |
547 | | -we can always rewrite the matrix \( \boldsymbol{C} \) in terms of a singular-value |
548 | | -decomposition with unitary/orthogonal matrices \( \boldsymbol{U} \) and \( \boldsymbol{V} \) |
549 | | -of dimension \( d\times d \) and a matrix \( \boldsymbol{\Sigma} \) which contains the |
550 | | -(diagonal) singular values \( \sigma_0\leq \sigma_1 \leq \dots 0 \) as |
551 | | -</p> |
552 | | - |
553 | | -$$ |
554 | | -\boldsymbol{C}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\dagger}. |
555 | | -$$ |
556 | | - |
557 | | - |
558 | | -<!-- !split --> |
559 | | -<h2 id="svd-parts-in-proof" class="anchor">SVD parts in proof </h2> |
560 | | - |
561 | | -<p>This means we can rewrite the coefficients \( c_{ij} \) in terms of the singular-value decomposition</p> |
562 | | -$$ |
563 | | -c_{ij}=\sum_k u_{ik}\sigma_kv_{kj}, |
564 | | -$$ |
565 | | - |
566 | | -<p>and inserting this in the definition of the pure state \( \vert \psi\rangle \) we have</p> |
567 | | - |
568 | | -$$ |
569 | | -\vert\psi \rangle = \sum_{ij} \left(\sum_k u_{ik}\sigma_kv_{kj} \right)\vert i\rangle_A\vert j\rangle_B. |
570 | | -$$ |
571 | | - |
572 | | - |
573 | | -<!-- !split --> |
574 | | -<h2 id="slight-rewrite" class="anchor">Slight rewrite </h2> |
575 | | -<p>We rewrite the last equation as</p> |
576 | | - |
577 | | -$$ |
578 | | -\vert\psi \rangle = \sum_{k}\sigma_k \left(\sum_i u_{ik}\vert i\rangle_A\right)\otimes\left(\sum_jv_{kj}\vert j\rangle_B\right), |
579 | | -$$ |
580 | | - |
581 | | -<p>which we identify simply as, since the matrices \( \boldsymbol{U} \) and \( \boldsymbol{V} \) represent unitary transformations,</p> |
582 | | -$$ |
583 | | -\vert\psi \rangle = \sum_{k}\sigma_k \vert k\rangle_A\vert k\rangle_B. |
584 | | -$$ |
585 | | - |
586 | | - |
587 | | -<!-- !split --> |
588 | | -<h2 id="different-dimensionalities" class="anchor">Different dimensionalities </h2> |
589 | | - |
590 | | -<p>It is straight forward to prove this relation in case systems \( A \) and |
591 | | -\( B \) have different dimensionalities. Once we know the Schmidt |
592 | | -decomposition of a state, we can immmediately say whether it is |
593 | | -entangled or not. If a state \( \psi \) has is entangled, then its Schmidt |
594 | | -decomposition has more than one term. Stated differently, the state is |
595 | | -entangled if the so-called Schmidt rank is is greater than one. There |
596 | | -is another important property of the Schmidt decomposition which is |
597 | | -related to the properties of the density matrices and their trace |
598 | | -operations and the entropies. In order to introduce these concepts let |
599 | | -us look at the two-qubit Hamiltonian described here. |
600 | | -</p> |
601 | | - |
602 | 445 | <!-- !split --> |
603 | 446 | <h2 id="entropies-and-density-matrices" class="anchor">Entropies and density matrices </h2> |
604 | 447 |
|
@@ -633,8 +476,6 @@ <h2 id="two-qubit-system-and-calculation-of-density-matrices-and-exercise" class |
633 | 476 |
|
634 | 477 | <b>This part is best seen using the jupyter-notebook</b>. |
635 | 478 |
|
636 | | -<p>The system we discuss here is a continuation of the two qubit example from week 2.</p> |
637 | | - |
638 | 479 | <p>This system can be thought of as composed of two subsystems |
639 | 480 | \( A \) and \( B \). Each subsystem has computational basis states |
640 | 481 | </p> |
@@ -834,30 +675,6 @@ <h2 id="two-qubit-system-and-calculation-of-density-matrices-and-exercise" class |
834 | 675 | </div> |
835 | 676 |
|
836 | 677 |
|
837 | | -<!-- !split --> |
838 | | - |
839 | | -<!-- --- begin exercise --- --> |
840 | | -<h2 id="exercise-1-two-qubit-hamiltonian" class="anchor">Exercise 1: Two-qubit Hamiltonian </h2> |
841 | | - |
842 | | -<p>Use the Hamiltonian for the two-qubit example to find the eigenpairs |
843 | | -as functions of the interaction strength \( \lambda \) and study the final |
844 | | -eigenvectors as functions of the admixture of the original basis |
845 | | -states. Discuss the results as functions of the parameter \( \lambda \) and compute the von Neumann |
846 | | -entropy and discuss the results. You will need to calculate the entropy of the subsystems \( A \) or \( B \). |
847 | | -</p> |
848 | | - |
849 | | -<!-- --- end exercise --- --> |
850 | | - |
851 | | -<!-- !split --> |
852 | | -<h2 id="the-next-lecture" class="anchor">The next lecture </h2> |
853 | | - |
854 | | -<p>In our next lecture, we will discuss</p> |
855 | | -<ol> |
856 | | -<li> Reminder and review of entropy and entanglement</li> |
857 | | -<li> Gates and circuits and how to perform operations on states</li> |
858 | | -</ol> |
859 | | -<a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/Textbooks/Programming/chapter2.pdf" target="_self">Reading: Chapters 2.1-2.11 of Hundt's text</a> |
860 | | - |
861 | 678 | <!-- ------------------- end of main content --------------- --> |
862 | 679 | </div> <!-- end container --> |
863 | 680 | <!-- include javascript, jQuery *first* --> |
|
0 commit comments