Skip to content

Commit a489ae8

Browse files
committed
typos
1 parent a8594ba commit a489ae8

File tree

8 files changed

+277
-277
lines changed

8 files changed

+277
-277
lines changed

doc/pub/week4/html/week4-bs.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -864,13 +864,13 @@ <h2 id="time-evolution" class="anchor">Time evolution </h2>
864864
\vert \psi(t) \rangle=\exp{\imath\omega_L t\sigma_z/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{\imath\omega_L t\sigma_z/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
865865
$$
866866

867-
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_self"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
867+
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specific gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_self"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
868868

869869
<!-- !split -->
870870
<h2 id="final-expression" class="anchor">Final expression </h2>
871-
<p>In exercise 4 from the second week, we showed that, given \( \boldsymbol{A} \) an operator on a vector space satisfying \( \boldsymbol{A}^2=1 \) and \( \alpha \) any real constant, we had</p>
871+
<p>Assume we have a given operator \( \boldsymbol{A} \) acting on a vector space \( \vert a\rangle \) with eigenvalues \( a \) </p>
872872
$$
873-
\exp{\imath\alpha \boldsymbol{A}}=\sum_{n=0}^{\infty} \frac{(i\alpha)^n}{n!}\boldsymbol{A}^n=\boldsymbol{I}\cos{\alpha}+\imath\boldsymbol{A}\sin{\alpha}.
873+
\exp{\boldsymbol{A}}\vert a\rangle=\sum_{n=0}^{\infty} \frac{1}{n!}\boldsymbol{A}^n\vert a\rangle=\sum_{n=0}^{\infty} \frac{a^n}{n!}\vert a\rangle=\exp{a}\vert a\rangle.
874874
$$
875875

876876
<p>Using this result, we obtain</p>

doc/pub/week4/html/week4-reveal.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -878,15 +878,15 @@ <h2 id="time-evolution">Time evolution </h2>
878878
$$
879879
<p>&nbsp;<br>
880880

881-
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
881+
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specific gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
882882
</section>
883883

884884
<section>
885885
<h2 id="final-expression">Final expression </h2>
886-
<p>In exercise 4 from the second week, we showed that, given \( \boldsymbol{A} \) an operator on a vector space satisfying \( \boldsymbol{A}^2=1 \) and \( \alpha \) any real constant, we had</p>
886+
<p>Assume we have a given operator \( \boldsymbol{A} \) acting on a vector space \( \vert a\rangle \) with eigenvalues \( a \) </p>
887887
<p>&nbsp;<br>
888888
$$
889-
\exp{\imath\alpha \boldsymbol{A}}=\sum_{n=0}^{\infty} \frac{(i\alpha)^n}{n!}\boldsymbol{A}^n=\boldsymbol{I}\cos{\alpha}+\imath\boldsymbol{A}\sin{\alpha}.
889+
\exp{\boldsymbol{A}}\vert a\rangle=\sum_{n=0}^{\infty} \frac{1}{n!}\boldsymbol{A}^n\vert a\rangle=\sum_{n=0}^{\infty} \frac{a^n}{n!}\vert a\rangle=\exp{a}\vert a\rangle.
890890
$$
891891
<p>&nbsp;<br>
892892

doc/pub/week4/html/week4-solarized.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -769,13 +769,13 @@ <h2 id="time-evolution">Time evolution </h2>
769769
\vert \psi(t) \rangle=\exp{\imath\omega_L t\sigma_z/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{\imath\omega_L t\sigma_z/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
770770
$$
771771

772-
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
772+
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specific gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
773773

774774
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
775775
<h2 id="final-expression">Final expression </h2>
776-
<p>In exercise 4 from the second week, we showed that, given \( \boldsymbol{A} \) an operator on a vector space satisfying \( \boldsymbol{A}^2=1 \) and \( \alpha \) any real constant, we had</p>
776+
<p>Assume we have a given operator \( \boldsymbol{A} \) acting on a vector space \( \vert a\rangle \) with eigenvalues \( a \) </p>
777777
$$
778-
\exp{\imath\alpha \boldsymbol{A}}=\sum_{n=0}^{\infty} \frac{(i\alpha)^n}{n!}\boldsymbol{A}^n=\boldsymbol{I}\cos{\alpha}+\imath\boldsymbol{A}\sin{\alpha}.
778+
\exp{\boldsymbol{A}}\vert a\rangle=\sum_{n=0}^{\infty} \frac{1}{n!}\boldsymbol{A}^n\vert a\rangle=\sum_{n=0}^{\infty} \frac{a^n}{n!}\vert a\rangle=\exp{a}\vert a\rangle.
779779
$$
780780

781781
<p>Using this result, we obtain</p>

doc/pub/week4/html/week4.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -846,13 +846,13 @@ <h2 id="time-evolution">Time evolution </h2>
846846
\vert \psi(t) \rangle=\exp{\imath\omega_L t\sigma_z/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{\imath\omega_L t\sigma_z/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
847847
$$
848848

849-
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
849+
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specific gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
850850

851851
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
852852
<h2 id="final-expression">Final expression </h2>
853-
<p>In exercise 4 from the second week, we showed that, given \( \boldsymbol{A} \) an operator on a vector space satisfying \( \boldsymbol{A}^2=1 \) and \( \alpha \) any real constant, we had</p>
853+
<p>Assume we have a given operator \( \boldsymbol{A} \) acting on a vector space \( \vert a\rangle \) with eigenvalues \( a \) </p>
854854
$$
855-
\exp{\imath\alpha \boldsymbol{A}}=\sum_{n=0}^{\infty} \frac{(i\alpha)^n}{n!}\boldsymbol{A}^n=\boldsymbol{I}\cos{\alpha}+\imath\boldsymbol{A}\sin{\alpha}.
855+
\exp{\boldsymbol{A}}\vert a\rangle=\sum_{n=0}^{\infty} \frac{1}{n!}\boldsymbol{A}^n\vert a\rangle=\sum_{n=0}^{\infty} \frac{a^n}{n!}\vert a\rangle=\exp{a}\vert a\rangle.
856856
$$
857857

858858
<p>Using this result, we obtain</p>
0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)