Skip to content

Commit 8bb2bc2

Browse files
committed
Update week5.do.txt
1 parent 21f45e4 commit 8bb2bc2

File tree

1 file changed

+22
-1
lines changed

1 file changed

+22
-1
lines changed

doc/src/week5/week5.do.txt

Lines changed: 22 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -422,15 +422,36 @@ Let us assume we are studying specific system $A$. The density matrix,
422422
using an ONB basis $\psi_j$ is defined as
423423
!bt
424424
\[
425-
\rho_A=\sum_j\lambda_j\vert \psi_j\rangle\langle \psi_j\vert=\sum_j p_j\vert \psi_j\rangle\langle \psi_j\vert,
425+
\bm{\rho}_A=\sum_j\lambda_j\vert \psi_j\rangle\langle \psi_j\vert=\sum_j p_j\vert \psi_j\rangle\langle \psi_j\vert,
426426
\]
427427
!et
428428
and the eigenvalues $\lambda_j$ are the probabilities (or overlap coefficients) of being in a
429429
specific state $\psi_j$.
430430

431+
Note that the density matrix/operator is a semi-positive definite matrix.
432+
431433
!split
432434
===== Linking with a new expression for the entropy =====
433435

436+
Using a unitary transformation $\bm{U}$ we can transform the density
437+
matrix into a diagonal matrix $\bm{D}_a$ where the eigenvalues are the
438+
above mentioned probabilities (overlap coefficients squared). We can then define
439+
!bt
440+
\[
441+
\bm{D}_A=\bm{U}^{\dagger}\bm{\rho}_A\bm{U}=\begin{bmatrix} p_0 & 0 & 0 & \dots & 0\\
442+
0 & p_1 & 0 & \dots & 0\\
443+
0 & 0 & p_2 & \dots & 0\\
444+
\dots & \dots & \dots & \dots & \dots\\
445+
\dots & \dots & \dots & \dots & \dots\\
446+
\dots & \dots & \dots & \dots & \dots\\
447+
0 & 0 & \dots & 0 & p_{n-1}\\
448+
\end{bmatrix}.
449+
\]
450+
!et
451+
452+
!split
453+
===== Von Neumann entropy =====
454+
434455

435456

436457
!split

0 commit comments

Comments
 (0)