|
| 1 | +\documentclass{beamer} |
| 2 | +\usepackage{amsmath,amsthm,amsfonts} |
| 3 | +\title{Quantum Operations and Kraus Representation} |
| 4 | +\author{Graduate Lecture on Quantum Information} |
| 5 | +\date{\today} |
| 6 | + |
| 7 | +\newtheorem{definition}{Definition} |
| 8 | +\newtheorem{theorem}{Theorem} |
| 9 | +\newtheorem{example}{Example} |
| 10 | + |
| 11 | +\begin{document} |
| 12 | + |
| 13 | +\begin{frame} |
| 14 | +\titlepage |
| 15 | +\end{frame} |
| 16 | + |
| 17 | +\begin{frame}{Outline} |
| 18 | +\tableofcontents |
| 19 | +\end{frame} |
| 20 | + |
| 21 | +\section{Motivation and Background} |
| 22 | +\begin{frame}{Motivation: Beyond Unitary Evolution} |
| 23 | + \begin{itemize} |
| 24 | + \item In closed quantum systems, evolution is unitary: $\rho\to U\rho U^\dagger$. However, real systems interact with environments, undergo measurements, or experience noise, so evolution is more general [oai_citation:0‡en.wikipedia.org](https://en.wikipedia.org/wiki/Quantum_operation#:~:text=In%20quantum%20mechanics%20%2C%20a,is%20called%20a%20%2058). |
| 25 | + \item A **quantum operation** (or **quantum channel**) is a mathematical map describing the general transformation of a quantum state including open-system dynamics [oai_citation:1‡en.wikipedia.org](https://en.wikipedia.org/wiki/Quantum_operation#:~:text=In%20quantum%20mechanics%20%2C%20a,is%20called%20a%20%2058) [oai_citation:2‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=where%20T%20is%20a%20unitary,A%29%20%11). |
| 26 | + \item Such maps must be **completely positive and trace-preserving (CPTP)** to ensure valid quantum states remain valid [oai_citation:3‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=where%20T%20is%20a%20unitary,A%29%20%11) [oai_citation:4‡cs.umd.edu](https://www.cs.umd.edu/class/fall2024/cmsc657/Lecture-4.pdf#:~:text=Theorem%201%20%28Kraus%20decomposition%29,with%20P%20k%20A). |
| 27 | + \item Intuition: any CPTP map can be realized by coupling the system to an environment, evolving unitarily, and then ignoring (tracing out) the environment [oai_citation:5‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=%E2%80%A2%20It%20can%20be%20shown,27) [oai_citation:6‡cs.umd.edu](https://www.cs.umd.edu/class/fall2024/cmsc657/Lecture-4.pdf#:~:text=Theorem%201%20%28Kraus%20decomposition%29,with%20P%20k%20A). |
| 28 | + \end{itemize} |
| 29 | +\end{frame} |
| 30 | + |
| 31 | +\section{Quantum Operations (CPTP Maps)} |
| 32 | +\begin{frame}{Definition: Quantum Operation (CPTP Map)} |
| 33 | + \begin{block}{Definition (Quantum Operation)} |
| 34 | + A **quantum operation** $\mathcal{E}$ is a linear map on density operators that is (i) trace-preserving and (ii) completely positive. Physically, it represents the most general state evolution (including noise and measurements) [oai_citation:7‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=where%20T%20is%20a%20unitary,A%29%20%11) [oai_citation:8‡cs.umd.edu](https://www.cs.umd.edu/class/fall2024/cmsc657/Lecture-4.pdf#:~:text=Theorem%201%20%28Kraus%20decomposition%29,with%20P%20k%20A). |
| 35 | + \end{block} |
| 36 | + \pause |
| 37 | + \begin{itemize} |
| 38 | + \item Equivalently, by the Stinespring dilation theorem, any quantum operation can be written as |
| 39 | + \[ |
| 40 | + \mathcal{E}(\rho) = \Tr_E\bigl[\, U\,(\rho \otimes |0\rangle\langle0|)\,U^\dagger \bigr], |
| 41 | + \] |
| 42 | + where $U$ is a unitary on the joint system+environment, and the environment is initialized in a fixed pure state $|0\rangle$ [oai_citation:9‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=4,A%29%20%3D%20Trf%20%10%20T) [oai_citation:10‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=%E2%80%A2%20It%20can%20be%20shown,27). |
| 43 | + \item In this model, the environment Hilbert space is traced out after the joint unitary, yielding an effective map on the system alone. |
| 44 | + \item Properties: Such $\mathcal{E}$ automatically preserves positivity, hermiticity, and trace of $\rho$ [oai_citation:11‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=where%20T%20is%20a%20unitary,A%29%20%11). |
| 45 | + \end{itemize} |
| 46 | +\end{frame} |
| 47 | + |
| 48 | +\section{Kraus Representation Theorem} |
| 49 | +\begin{frame}{Kraus Representation Theorem} |
| 50 | + \begin{theorem}[Kraus Representation] |
| 51 | + Any CPTP map $\mathcal{E}$ on a finite-dimensional system can be expressed in **operator-sum form**: |
| 52 | + \[ |
| 53 | + \mathcal{E}(\rho) \;=\; \sum_{k} K_{k}\,\rho\, K_{k}^\dagger, |
| 54 | + \] |
| 55 | + where $\{K_k\}$ are called **Kraus operators**, satisfying the completeness relation $\sum_k K_k^\dagger K_k = I$ (for trace-preserving maps) [oai_citation:12‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=form%20S,%2837) [oai_citation:13‡cs.umd.edu](https://www.cs.umd.edu/class/fall2024/cmsc657/Lecture-4.pdf#:~:text=Theorem%201%20%28Kraus%20decomposition%29,with%20P%20k%20A). |
| 56 | + Conversely, any map of this form is CPTP. |
| 57 | + \end{theorem} |
| 58 | + \pause |
| 59 | + {\footnotesize (Here $I$ is the identity on the system Hilbert space. The condition $\sum_k K_k^\dagger K_k = I$ ensures $\Tr(\mathcal{E}(\rho))=\Tr(\rho)$ [oai_citation:14‡en.wikipedia.org](https://en.wikipedia.org/wiki/Quantum_depolarizing_channel#:~:text=Image%3A%20%7B%5Cdisplaystyle%20K_%7B0%7D%3D%7B%5Csqrt%20%7B1,4%7D%7D%7DZ) [oai_citation:15‡cs.umd.edu](https://www.cs.umd.edu/class/fall2024/cmsc657/Lecture-4.pdf#:~:text=Theorem%201%20%28Kraus%20decomposition%29,with%20P%20k%20A).)} |
| 60 | +\end{frame} |
| 61 | + |
| 62 | +\section{Derivation of Kraus Representation} |
| 63 | +\begin{frame}{Derivation: Unitary + Partial Trace} |
| 64 | + Consider a system $S$ and environment $E$ with joint unitary $U$ and environment initialized in $|e_0\rangle$. Then for any system state $\rho$: |
| 65 | + \[ |
| 66 | + \mathcal{E}(\rho) \;=\; \Tr_E\Bigl[\, U\bigl(\rho \otimes |e_0\rangle\langle e_0|\bigr)U^\dagger \Bigr]. |
| 67 | + \] |
| 68 | + Using an orthonormal basis $\{|e_i\rangle\}$ for the environment, the partial trace is |
| 69 | + $\Tr_E(X)=\sum_i \langle e_i| X |e_i\rangle$. Thus |
| 70 | + \begin{align*} |
| 71 | + \mathcal{E}(\rho) |
| 72 | + &= \sum_i \langle e_i|\, U\, (\rho\otimes|e_0\rangle\langle e_0|)\, U^\dagger \,|e_i\rangle \\ |
| 73 | + &= \sum_i \Bigl(\langle e_i|U|e_0\rangle\Bigr)\,\rho\,\Bigl(\langle e_i|U|e_0\rangle\Bigr)^\dagger. |
| 74 | + \end{align*} |
| 75 | + Define the operators on $S$: $K_i \equiv \langle e_i|U|e_0\rangle$. Then |
| 76 | + \[ |
| 77 | + \mathcal{E}(\rho) = \sum_i K_i\,\rho\,K_i^\dagger, |
| 78 | + \] |
| 79 | + which is the Kraus (operator-sum) representation. The trace-preserving condition $\Tr(\mathcal{E}(\rho))=\Tr(\rho)$ implies $\sum_i K_i^\dagger K_i = I$. |
| 80 | +\end{frame} |
| 81 | + |
| 82 | +\section{Example: Depolarizing Channel} |
| 83 | +\begin{frame}{Example: Depolarizing Channel} |
| 84 | + \begin{example}[Single-Qubit Depolarizing Channel] |
| 85 | + The qubit depolarizing channel $\Delta_\lambda$ with parameter $\lambda$ acts as |
| 86 | + \[ |
| 87 | + \Delta_\lambda(\rho) = (1-\lambda)\rho + \tfrac{\lambda}{3}(X\rho X + Y\rho Y + Z\rho Z). |
| 88 | + \] |
| 89 | + In Kraus form, one convenient set of operators is [oai_citation:16‡en.wikipedia.org](https://en.wikipedia.org/wiki/Quantum_depolarizing_channel#:~:text=Image%3A%20%7B%5Cdisplaystyle%20K_%7B0%7D%3D%7B%5Csqrt%20%7B1,4%7D%7D%7DZ): |
| 90 | + \[ |
| 91 | + K_0 = \sqrt{1-\tfrac{3\lambda}{4}}\,I,\quad |
| 92 | + K_1 = \sqrt{\tfrac{\lambda}{4}}\,X,\quad |
| 93 | + K_2 = \sqrt{\tfrac{\lambda}{4}}\,Y,\quad |
| 94 | + K_3 = \sqrt{\tfrac{\lambda}{4}}\,Z, |
| 95 | + \] |
| 96 | + so that $\Delta_\lambda(\rho)=\sum_{i=0}^3 K_i\,\rho\,K_i^\dagger$. These satisfy $\sum_i K_i^\dagger K_i = I$, ensuring trace preservation. |
| 97 | + \end{example} |
| 98 | +\end{frame} |
| 99 | + |
| 100 | +\section{Summary} |
| 101 | +\begin{frame}{Summary of Key Points} |
| 102 | + \begin{itemize} |
| 103 | + \item {\bf Quantum operations (channels)} generalize unitary evolution to open systems and must be completely positive and trace-preserving [oai_citation:17‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=where%20T%20is%20a%20unitary,A%29%20%11) [oai_citation:18‡cs.umd.edu](https://www.cs.umd.edu/class/fall2024/cmsc657/Lecture-4.pdf#:~:text=Theorem%201%20%28Kraus%20decomposition%29,with%20P%20k%20A). |
| 104 | + \item {\bf Stinespring dilation:} Any CPTP map can be implemented by a unitary on a larger system plus partial trace over an environment [oai_citation:19‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=%E2%80%A2%20It%20can%20be%20shown,27). |
| 105 | + \item {\bf Kraus representation:} By choosing an environment basis, one derives $\mathcal{E}(\rho)=\sum_k K_k \rho K_k^\dagger$ with $\sum K_k^\dagger K_k=I$ [oai_citation:20‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=form%20S,%2837) [oai_citation:21‡cs.umd.edu](https://www.cs.umd.edu/class/fall2024/cmsc657/Lecture-4.pdf#:~:text=Theorem%201%20%28Kraus%20decomposition%29,with%20P%20k%20A). |
| 106 | + \item {\bf Example:} The depolarizing channel’s Kraus operators are $K_0=\sqrt{1-\frac{3\lambda}{4}}I, K_{1,2,3}=\sqrt{\frac{\lambda}{4}}\,\{X,Y,Z\}$ [oai_citation:22‡en.wikipedia.org](https://en.wikipedia.org/wiki/Quantum_depolarizing_channel#:~:text=Image%3A%20%7B%5Cdisplaystyle%20K_%7B0%7D%3D%7B%5Csqrt%20%7B1,4%7D%7D%7DZ). |
| 107 | + \item Kraus operators are not unique (different bases give unitary-equivalent sets) [oai_citation:23‡quantum.phys.cmu.edu](https://quantum.phys.cmu.edu/QCQI/qitd412.pdf#:~:text=%E2%80%A2%20The%20main%20advantage%20of,other%20by%20a%20unitary%20matrix). However, the operator-sum form provides a practical tool to analyze quantum noise. |
| 108 | + \end{itemize} |
| 109 | +\end{frame} |
| 110 | + |
| 111 | +\end{document} |
0 commit comments