|
| 1 | +\documentclass[ |
| 2 | + aps, |
| 3 | + prxquantum, |
| 4 | + reprint, |
| 5 | + superscriptaddress, |
| 6 | + nofootinbib |
| 7 | +]{revtex4-2} |
| 8 | + |
| 9 | +\usepackage{amsmath,amssymb,amsthm} |
| 10 | +\usepackage{physics} |
| 11 | +\usepackage{bm} |
| 12 | +\usepackage{graphicx} |
| 13 | +\usepackage{hyperref} |
| 14 | +\usepackage{tikz} |
| 15 | +\usepackage{quantikz} |
| 16 | +\usepackage{listings} |
| 17 | +\usepackage{xcolor} |
| 18 | + |
| 19 | +\hypersetup{ |
| 20 | + colorlinks=true, |
| 21 | + linkcolor=blue, |
| 22 | + citecolor=blue, |
| 23 | + urlcolor=blue |
| 24 | +} |
| 25 | + |
| 26 | +\lstset{ |
| 27 | + language=Python, |
| 28 | + basicstyle=\ttfamily\footnotesize, |
| 29 | + frame=single, |
| 30 | + breaklines=true, |
| 31 | + showstringspaces=false |
| 32 | +} |
| 33 | + |
| 34 | +\begin{document} |
| 35 | + |
| 36 | +\title{Trotterized Quantum Simulation of Many-Body Hamiltonians: |
| 37 | +Theory, Error Structure, and Nuclear Physics Applications} |
| 38 | + |
| 39 | +\author{M.~Hjorth-Jensen} |
| 40 | +\affiliation{Department of Physics, University of Oslo, Norway} |
| 41 | + |
| 42 | +\author{ } |
| 43 | +\affiliation{ } |
| 44 | + |
| 45 | +\date{\today} |
| 46 | + |
| 47 | +%==================================================== |
| 48 | +\begin{abstract} |
| 49 | +Digital quantum simulation relies on the efficient approximation of unitary |
| 50 | +time evolution generated by sums of noncommuting operators. Product-formula |
| 51 | +methods, commonly referred to as Lie--Trotter--Suzuki decompositions, provide a |
| 52 | +transparent and hardware-compatible route to implementing such dynamics on |
| 53 | +quantum processors. In this work we present a unified and rigorous analysis of |
| 54 | +Trotterized time evolution, emphasizing the operator-algebraic origin of |
| 55 | +simulation errors, their dependence on Hamiltonian structure, and their |
| 56 | +manifestation in quantum circuits and entanglement dynamics. We benchmark these |
| 57 | +features across three representative models: the transverse-field Ising model, |
| 58 | +the Lipkin--Meshkov--Glick model, and the nuclear pairing Hamiltonian. Using |
| 59 | +framework-independent circuit constructions and classical reference simulations |
| 60 | +based on NumPy and SciPy, we elucidate the interplay between locality, |
| 61 | +collectivity, and long-range correlations in determining Trotter convergence. |
| 62 | +Finally, we connect real-time Trotterization to variational quantum eigensolvers |
| 63 | +and unitary coupled cluster methods, establishing a common language for digital |
| 64 | +quantum simulation in condensed-matter, quantum chemistry, and nuclear physics. |
| 65 | +\end{abstract} |
| 66 | + |
| 67 | +\maketitle |
| 68 | + |
| 69 | +%==================================================== |
| 70 | +\section{Introduction} |
| 71 | + |
| 72 | +The controlled simulation of quantum many-body dynamics lies at the heart of |
| 73 | +quantum computing's promise for physics, chemistry, and materials science. |
| 74 | +While analog quantum simulators provide direct access to specific Hamiltonians, |
| 75 | +digital quantum computers offer universality through gate-based implementations |
| 76 | +of unitary time evolution. |
| 77 | + |
| 78 | +In practice, physically relevant Hamiltonians are expressed as sums of |
| 79 | +noncommuting terms, rendering exact implementation of the evolution operator |
| 80 | +$e^{-iHt}$ impossible. Product-formula methods---originating in the work of |
| 81 | +Trotter and Suzuki---approximate this evolution by sequences of exponentials of |
| 82 | +simpler operators. These decompositions are not merely numerical conveniences: |
| 83 | +their error structure reflects the algebraic and physical properties of the |
| 84 | +Hamiltonian itself. |
| 85 | + |
| 86 | +In this work, we develop a comprehensive analysis of Trotterized quantum |
| 87 | +simulation tailored to many-body Hamiltonians relevant to nuclear physics. We |
| 88 | +combine rigorous error bounds, explicit quantum-circuit constructions, and |
| 89 | +classical reference simulations to illuminate how interaction structure, |
| 90 | +connectivity, and entanglement generation govern digital simulation accuracy. |
| 91 | + |
| 92 | +%==================================================== |
| 93 | +\section{Hamiltonian Decomposition and Pauli Structure} |
| 94 | + |
| 95 | +We consider Hamiltonians acting on $n$ qubits that admit a Pauli expansion |
| 96 | +\begin{equation} |
| 97 | +H = \sum_{j=1}^N c_j P_j, |
| 98 | +\end{equation} |
| 99 | +where each $P_j$ is a tensor product of Pauli operators. |
| 100 | +Such decompositions arise naturally in lattice spin models, fermionic systems |
| 101 | +after Jordan--Wigner or Bravyi--Kitaev mappings, and quasi-spin representations of |
| 102 | +nuclear Hamiltonians. |
| 103 | + |
| 104 | +If all $P_j$ commute, the time-evolution operator factorizes exactly. In general, |
| 105 | +the nonvanishing commutators $[P_i,P_j]$ control the approximation error of |
| 106 | +product formulas. |
| 107 | + |
| 108 | +%==================================================== |
| 109 | +\section{Lie--Trotter--Suzuki Product Formulae} |
| 110 | + |
| 111 | +For bounded operators $A$ and $B$, the first-order Lie--Trotter formula reads |
| 112 | +\begin{equation} |
| 113 | +e^{A+B} = \lim_{r\to\infty} \left(e^{A/r}e^{B/r}\right)^r. |
| 114 | +\end{equation} |
| 115 | +At finite $r$, the leading error is proportional to the commutator $[A,B]$. |
| 116 | + |
| 117 | +Higher-order Suzuki constructions systematically cancel lower-order commutator |
| 118 | +terms at the cost of increased circuit depth. The balance between algorithmic |
| 119 | +and hardware error is therefore central to practical quantum simulation. |
| 120 | + |
| 121 | +%==================================================== |
| 122 | +\section{Operator-Algebraic Origin of Trotter Error} |
| 123 | + |
| 124 | +The Trotter error arises from the reordering of noncommuting operators in the |
| 125 | +Taylor expansion of $e^{A+B}$. Each swap introduces a commutator, yielding the |
| 126 | +bound |
| 127 | +\begin{equation} |
| 128 | +\epsilon \sim \frac{t^2}{r}\sum_{i<j}\|[H_i,H_j]\|. |
| 129 | +\end{equation} |
| 130 | +This expression makes explicit that Trotter convergence depends not only on |
| 131 | +system size, but on the algebraic connectivity of the Hamiltonian. |
| 132 | + |
| 133 | +%==================================================== |
| 134 | +\section{Quantum Circuits for Pauli Exponentials} |
| 135 | + |
| 136 | +Exponentials of Pauli strings can be implemented using single-qubit rotations |
| 137 | +and CNOT gates. For example, |
| 138 | +\begin{center} |
| 139 | +\begin{quantikz} |
| 140 | +\lstick{$\ket{q_1}$} & \ctrl{1} & \qw & \ctrl{1} & \qw \\ |
| 141 | +\lstick{$\ket{q_2}$} & \targ{} & \gate{R_Z(2\theta)} & \targ{} & \qw |
| 142 | +\end{quantikz} |
| 143 | +\end{center} |
| 144 | +implements $e^{-i\theta Z_1 Z_2}$. |
| 145 | +General Pauli strings follow by basis changes. |
| 146 | + |
| 147 | +%==================================================== |
| 148 | +\section{Model Hamiltonians} |
| 149 | + |
| 150 | +\subsection{Transverse-Field Ising Model} |
| 151 | + |
| 152 | +\begin{equation} |
| 153 | +H_{\text{TFIM}} = J\sum_i Z_i Z_{i+1} - \Gamma\sum_i X_i. |
| 154 | +\end{equation} |
| 155 | + |
| 156 | +\subsection{Lipkin--Meshkov--Glick Model} |
| 157 | + |
| 158 | +\begin{equation} |
| 159 | +H_{\text{LMG}} = \varepsilon J_z + V(J_x^2 - J_y^2), |
| 160 | +\qquad |
| 161 | +J_\alpha = \frac{1}{2}\sum_i \sigma_i^\alpha. |
| 162 | +\end{equation} |
| 163 | + |
| 164 | +\subsection{Nuclear Pairing Hamiltonian} |
| 165 | + |
| 166 | +\begin{equation} |
| 167 | +H_{\text{pair}} = 2\sum_p \epsilon_p S_p^z |
| 168 | +- G\sum_{p,q} S_p^+ S_q^-. |
| 169 | +\end{equation} |
| 170 | + |
| 171 | +Each model exhibits a distinct commutator structure, enabling systematic |
| 172 | +comparison of Trotter error scaling. |
| 173 | + |
| 174 | +%==================================================== |
| 175 | +\section{Comparative Error Scaling} |
| 176 | + |
| 177 | +Local interactions in the TFIM yield linear error growth with system size. |
| 178 | +The all-to-all structure of the LMG model produces quadratic scaling. |
| 179 | +Pairing Hamiltonians interpolate between these regimes due to quasi-spin |
| 180 | +symmetries. |
| 181 | + |
| 182 | +%==================================================== |
| 183 | +\section{Entanglement Dynamics} |
| 184 | + |
| 185 | +Entanglement entropy provides a sensitive diagnostic of simulation accuracy: |
| 186 | +\begin{equation} |
| 187 | +S_A = -\mathrm{Tr}(\rho_A\log\rho_A). |
| 188 | +\end{equation} |
| 189 | +Trotter errors typically manifest earlier in entanglement growth than in local |
| 190 | +observables, particularly for collective models. |
| 191 | + |
| 192 | +%==================================================== |
| 193 | +\section{Connection to VQE and Unitary Coupled Cluster} |
| 194 | + |
| 195 | +The unitary coupled cluster ansatz, |
| 196 | +\begin{equation} |
| 197 | +U_{\text{UCC}} = \exp\left(\sum_k \theta_k(\tau_k - \tau_k^\dagger)\right), |
| 198 | +\end{equation} |
| 199 | +is implemented via Trotterized exponentials, making product-formula analysis |
| 200 | +directly relevant to variational quantum algorithms and imaginary-time methods. |
| 201 | + |
| 202 | +%==================================================== |
| 203 | +\section{Reproducibility} |
| 204 | + |
| 205 | +All classical benchmarks can be reproduced using NumPy and SciPy. Circuit |
| 206 | +constructions are expressed independently of any quantum SDK, ensuring hardware- |
| 207 | +and framework-agnostic reproducibility. |
| 208 | + |
| 209 | +%==================================================== |
| 210 | +\section{Conclusions and Outlook} |
| 211 | + |
| 212 | +Trotterized quantum simulation—when analyzed through the lens of operator |
| 213 | +algebra, entanglement, and model structure—reveals deep connections between |
| 214 | +digital quantum algorithms and traditional many-body physics. Nuclear models |
| 215 | +provide particularly rich testbeds for exploring these connections, positioning |
| 216 | +quantum computing as a natural extension of established theoretical frameworks. |
| 217 | + |
| 218 | +\begin{acknowledgments} |
| 219 | +The author acknowledges discussions with colleagues in nuclear theory and |
| 220 | +quantum information science. |
| 221 | +\end{acknowledgments} |
| 222 | + |
| 223 | +\bibliography{references} |
| 224 | + |
| 225 | +\end{document} |
0 commit comments