Skip to content

Commit 782eb9c

Browse files
committed
Create trotterpaper.tex
1 parent 1edec12 commit 782eb9c

File tree

1 file changed

+225
-0
lines changed

1 file changed

+225
-0
lines changed
Lines changed: 225 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,225 @@
1+
\documentclass[
2+
aps,
3+
prxquantum,
4+
reprint,
5+
superscriptaddress,
6+
nofootinbib
7+
]{revtex4-2}
8+
9+
\usepackage{amsmath,amssymb,amsthm}
10+
\usepackage{physics}
11+
\usepackage{bm}
12+
\usepackage{graphicx}
13+
\usepackage{hyperref}
14+
\usepackage{tikz}
15+
\usepackage{quantikz}
16+
\usepackage{listings}
17+
\usepackage{xcolor}
18+
19+
\hypersetup{
20+
colorlinks=true,
21+
linkcolor=blue,
22+
citecolor=blue,
23+
urlcolor=blue
24+
}
25+
26+
\lstset{
27+
language=Python,
28+
basicstyle=\ttfamily\footnotesize,
29+
frame=single,
30+
breaklines=true,
31+
showstringspaces=false
32+
}
33+
34+
\begin{document}
35+
36+
\title{Trotterized Quantum Simulation of Many-Body Hamiltonians:
37+
Theory, Error Structure, and Nuclear Physics Applications}
38+
39+
\author{M.~Hjorth-Jensen}
40+
\affiliation{Department of Physics, University of Oslo, Norway}
41+
42+
\author{ }
43+
\affiliation{ }
44+
45+
\date{\today}
46+
47+
%====================================================
48+
\begin{abstract}
49+
Digital quantum simulation relies on the efficient approximation of unitary
50+
time evolution generated by sums of noncommuting operators. Product-formula
51+
methods, commonly referred to as Lie--Trotter--Suzuki decompositions, provide a
52+
transparent and hardware-compatible route to implementing such dynamics on
53+
quantum processors. In this work we present a unified and rigorous analysis of
54+
Trotterized time evolution, emphasizing the operator-algebraic origin of
55+
simulation errors, their dependence on Hamiltonian structure, and their
56+
manifestation in quantum circuits and entanglement dynamics. We benchmark these
57+
features across three representative models: the transverse-field Ising model,
58+
the Lipkin--Meshkov--Glick model, and the nuclear pairing Hamiltonian. Using
59+
framework-independent circuit constructions and classical reference simulations
60+
based on NumPy and SciPy, we elucidate the interplay between locality,
61+
collectivity, and long-range correlations in determining Trotter convergence.
62+
Finally, we connect real-time Trotterization to variational quantum eigensolvers
63+
and unitary coupled cluster methods, establishing a common language for digital
64+
quantum simulation in condensed-matter, quantum chemistry, and nuclear physics.
65+
\end{abstract}
66+
67+
\maketitle
68+
69+
%====================================================
70+
\section{Introduction}
71+
72+
The controlled simulation of quantum many-body dynamics lies at the heart of
73+
quantum computing's promise for physics, chemistry, and materials science.
74+
While analog quantum simulators provide direct access to specific Hamiltonians,
75+
digital quantum computers offer universality through gate-based implementations
76+
of unitary time evolution.
77+
78+
In practice, physically relevant Hamiltonians are expressed as sums of
79+
noncommuting terms, rendering exact implementation of the evolution operator
80+
$e^{-iHt}$ impossible. Product-formula methods---originating in the work of
81+
Trotter and Suzuki---approximate this evolution by sequences of exponentials of
82+
simpler operators. These decompositions are not merely numerical conveniences:
83+
their error structure reflects the algebraic and physical properties of the
84+
Hamiltonian itself.
85+
86+
In this work, we develop a comprehensive analysis of Trotterized quantum
87+
simulation tailored to many-body Hamiltonians relevant to nuclear physics. We
88+
combine rigorous error bounds, explicit quantum-circuit constructions, and
89+
classical reference simulations to illuminate how interaction structure,
90+
connectivity, and entanglement generation govern digital simulation accuracy.
91+
92+
%====================================================
93+
\section{Hamiltonian Decomposition and Pauli Structure}
94+
95+
We consider Hamiltonians acting on $n$ qubits that admit a Pauli expansion
96+
\begin{equation}
97+
H = \sum_{j=1}^N c_j P_j,
98+
\end{equation}
99+
where each $P_j$ is a tensor product of Pauli operators.
100+
Such decompositions arise naturally in lattice spin models, fermionic systems
101+
after Jordan--Wigner or Bravyi--Kitaev mappings, and quasi-spin representations of
102+
nuclear Hamiltonians.
103+
104+
If all $P_j$ commute, the time-evolution operator factorizes exactly. In general,
105+
the nonvanishing commutators $[P_i,P_j]$ control the approximation error of
106+
product formulas.
107+
108+
%====================================================
109+
\section{Lie--Trotter--Suzuki Product Formulae}
110+
111+
For bounded operators $A$ and $B$, the first-order Lie--Trotter formula reads
112+
\begin{equation}
113+
e^{A+B} = \lim_{r\to\infty} \left(e^{A/r}e^{B/r}\right)^r.
114+
\end{equation}
115+
At finite $r$, the leading error is proportional to the commutator $[A,B]$.
116+
117+
Higher-order Suzuki constructions systematically cancel lower-order commutator
118+
terms at the cost of increased circuit depth. The balance between algorithmic
119+
and hardware error is therefore central to practical quantum simulation.
120+
121+
%====================================================
122+
\section{Operator-Algebraic Origin of Trotter Error}
123+
124+
The Trotter error arises from the reordering of noncommuting operators in the
125+
Taylor expansion of $e^{A+B}$. Each swap introduces a commutator, yielding the
126+
bound
127+
\begin{equation}
128+
\epsilon \sim \frac{t^2}{r}\sum_{i<j}\|[H_i,H_j]\|.
129+
\end{equation}
130+
This expression makes explicit that Trotter convergence depends not only on
131+
system size, but on the algebraic connectivity of the Hamiltonian.
132+
133+
%====================================================
134+
\section{Quantum Circuits for Pauli Exponentials}
135+
136+
Exponentials of Pauli strings can be implemented using single-qubit rotations
137+
and CNOT gates. For example,
138+
\begin{center}
139+
\begin{quantikz}
140+
\lstick{$\ket{q_1}$} & \ctrl{1} & \qw & \ctrl{1} & \qw \\
141+
\lstick{$\ket{q_2}$} & \targ{} & \gate{R_Z(2\theta)} & \targ{} & \qw
142+
\end{quantikz}
143+
\end{center}
144+
implements $e^{-i\theta Z_1 Z_2}$.
145+
General Pauli strings follow by basis changes.
146+
147+
%====================================================
148+
\section{Model Hamiltonians}
149+
150+
\subsection{Transverse-Field Ising Model}
151+
152+
\begin{equation}
153+
H_{\text{TFIM}} = J\sum_i Z_i Z_{i+1} - \Gamma\sum_i X_i.
154+
\end{equation}
155+
156+
\subsection{Lipkin--Meshkov--Glick Model}
157+
158+
\begin{equation}
159+
H_{\text{LMG}} = \varepsilon J_z + V(J_x^2 - J_y^2),
160+
\qquad
161+
J_\alpha = \frac{1}{2}\sum_i \sigma_i^\alpha.
162+
\end{equation}
163+
164+
\subsection{Nuclear Pairing Hamiltonian}
165+
166+
\begin{equation}
167+
H_{\text{pair}} = 2\sum_p \epsilon_p S_p^z
168+
- G\sum_{p,q} S_p^+ S_q^-.
169+
\end{equation}
170+
171+
Each model exhibits a distinct commutator structure, enabling systematic
172+
comparison of Trotter error scaling.
173+
174+
%====================================================
175+
\section{Comparative Error Scaling}
176+
177+
Local interactions in the TFIM yield linear error growth with system size.
178+
The all-to-all structure of the LMG model produces quadratic scaling.
179+
Pairing Hamiltonians interpolate between these regimes due to quasi-spin
180+
symmetries.
181+
182+
%====================================================
183+
\section{Entanglement Dynamics}
184+
185+
Entanglement entropy provides a sensitive diagnostic of simulation accuracy:
186+
\begin{equation}
187+
S_A = -\mathrm{Tr}(\rho_A\log\rho_A).
188+
\end{equation}
189+
Trotter errors typically manifest earlier in entanglement growth than in local
190+
observables, particularly for collective models.
191+
192+
%====================================================
193+
\section{Connection to VQE and Unitary Coupled Cluster}
194+
195+
The unitary coupled cluster ansatz,
196+
\begin{equation}
197+
U_{\text{UCC}} = \exp\left(\sum_k \theta_k(\tau_k - \tau_k^\dagger)\right),
198+
\end{equation}
199+
is implemented via Trotterized exponentials, making product-formula analysis
200+
directly relevant to variational quantum algorithms and imaginary-time methods.
201+
202+
%====================================================
203+
\section{Reproducibility}
204+
205+
All classical benchmarks can be reproduced using NumPy and SciPy. Circuit
206+
constructions are expressed independently of any quantum SDK, ensuring hardware-
207+
and framework-agnostic reproducibility.
208+
209+
%====================================================
210+
\section{Conclusions and Outlook}
211+
212+
Trotterized quantum simulation—when analyzed through the lens of operator
213+
algebra, entanglement, and model structure—reveals deep connections between
214+
digital quantum algorithms and traditional many-body physics. Nuclear models
215+
provide particularly rich testbeds for exploring these connections, positioning
216+
quantum computing as a natural extension of established theoretical frameworks.
217+
218+
\begin{acknowledgments}
219+
The author acknowledges discussions with colleagues in nuclear theory and
220+
quantum information science.
221+
\end{acknowledgments}
222+
223+
\bibliography{references}
224+
225+
\end{document}

0 commit comments

Comments
 (0)