Skip to content

Commit 77d74f1

Browse files
committed
update
1 parent 5274c21 commit 77d74f1

File tree

7 files changed

+469
-293
lines changed

7 files changed

+469
-293
lines changed

doc/pub/week13/html/week13-bs.html

Lines changed: 28 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1861,19 +1861,19 @@ <h2 id="what-will-we-need-in-the-case-of-a-quantum-computer" class="anchor">What
18611861
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
18621862
<p>We will have to translate the classical data point \(\vec{x}\)
18631863
into a quantum datapoint \(\vert \Phi{(\vec{x})} \rangle\). This can
1864-
be achieved by a circuit \( \mathcal{U}\_\{\Phi(\vec{x})\} \vert 0\rangle \).
1864+
be achieved by a circuit \( \mathcal{U}_{\Phi(\vec{x})} \vert 0\rangle \).
18651865
</p>
18661866

1867-
<p>Here \(\Phi()\) could be any classical function applied
1868-
on the classical data \(\vec{x}\).
1867+
<p>Here \( \Phi() \) could be any classical function applied
1868+
on the classical data \( \vec{x} \).
18691869
</p>
18701870
</div>
18711871
</div>
18721872

18731873
<div class="panel panel-default">
18741874
<div class="panel-body">
18751875
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
1876-
<p>We need a parameterized quantum circuit \(W( \theta )\) that
1876+
<p>We need a parameterized quantum circuit \( W(\theta) \) that
18771877
processes the data in a way that in the end we
18781878
can apply a measurement that returns a classical value \(-1\) or
18791879
\(1\) for each classical input \(\vec{x}\) that indentifies the label
@@ -1887,16 +1887,23 @@ <h2 id="what-will-we-need-in-the-case-of-a-quantum-computer" class="anchor">What
18871887
<h2 id="the-most-general-ansatz" class="anchor">The most general ansatz </h2>
18881888

18891889
<p>Following these steps we can define an ansatz for this kind of problem
1890-
which is \(W(\theta) \mathcal{U}_{\Phi}(\vec{x}) \vert 0 \rangle\).
1890+
which is
18911891
</p>
1892+
$$
1893+
W(\theta) \mathcal{U}_{\Phi}(\vec{x}) \vert 0 \rangle.
1894+
$$
18921895

1893-
<p>These kind of ansatz are called quantum variational circuits.</p>
1896+
<p>These kind of ansatzes are called quantum variational circuits.</p>
18941897

18951898
<!-- !split -->
18961899
<h2 id="quantum-svm" class="anchor">Quantum SVM </h2>
18971900

1898-
<p>In the case of a quantum SVM we will only used the quantum feature maps
1899-
\(\mathcal{U}_{\Phi(\vec{x})}\) to translate the classical data into
1901+
<p>In the case of a quantum SVM we will only use the quantum feature maps</p>
1902+
$$
1903+
\mathcal{U}_{\Phi(\vec{x})},
1904+
$$
1905+
1906+
<p>to translate the classical data into
19001907
quantum states and build the Kernel of the SVM out of these quantum
19011908
states. After calculating the Kernel matrix on the quantum computer we
19021909
can train the Quantum SVM the same way as the classical SVM.
@@ -1907,10 +1914,19 @@ <h2 id="defining-the-quantum-kernel" class="anchor">Defining the Quantum Kernel
19071914

19081915
<p>The idea of the quantum kernel is exactly the same as in the classical
19091916
case. We take the inner product
1910-
\(K(\vec{x}, \vec{z}) = \vert \langle \Phi (\vec{x}) \vert \Phi(\vec{z}) \rangle \vert^2 = \langle 0^n \vert \mathcal{U}_{\Phi(\vec{x})}^{t} \mathcal{U}_{\Phi(\vec{z})} \vert 0^n \rangle\),
1911-
but now with the quantum feature maps \(\mathcal{U}_{\Phi(\vec{x})}\).
1912-
The idea is that if we choose a quantum feature maps that is not easy to
1913-
simulate with a classical computer we might obtain a quantum advantage.
1917+
</p>
1918+
$$
1919+
K(\vec{x}, \vec{z}) = \vert \langle \Phi (\vec{x}) \vert \Phi(\vec{z}) \rangle \vert^2 = \langle 0^n \vert \mathcal{U}_{\Phi(\vec{x})}^{t} \mathcal{U}_{\Phi(\vec{z})} \vert 0^n \rangle,
1920+
$$
1921+
1922+
<p>but now with the quantum feature maps</p>
1923+
$$
1924+
\mathcal{U}_{\Phi(\vec{x})}.
1925+
$$
1926+
1927+
<p>The idea is that if we choose a quantum feature maps that is not easy
1928+
to simulate with a classical computer we might obtain a quantum
1929+
advantage.
19141930
</p>
19151931

19161932
<!-- !split -->

doc/pub/week13/html/week13-reveal.html

Lines changed: 36 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1918,18 +1918,18 @@ <h2 id="what-will-we-need-in-the-case-of-a-quantum-computer">What will we need i
19181918
<p>
19191919
<p>We will have to translate the classical data point \(\vec{x}\)
19201920
into a quantum datapoint \(\vert \Phi{(\vec{x})} \rangle\). This can
1921-
be achieved by a circuit \( \mathcal{U}\_\{\Phi(\vec{x})\} \vert 0\rangle \).
1921+
be achieved by a circuit \( \mathcal{U}_{\Phi(\vec{x})} \vert 0\rangle \).
19221922
</p>
19231923

1924-
<p>Here \(\Phi()\) could be any classical function applied
1925-
on the classical data \(\vec{x}\).
1924+
<p>Here \( \Phi() \) could be any classical function applied
1925+
on the classical data \( \vec{x} \).
19261926
</p>
19271927
</div>
19281928

19291929
<div class="alert alert-block alert-block alert-text-normal">
19301930
<b></b>
19311931
<p>
1932-
<p>We need a parameterized quantum circuit \(W( \theta )\) that
1932+
<p>We need a parameterized quantum circuit \( W(\theta) \) that
19331933
processes the data in a way that in the end we
19341934
can apply a measurement that returns a classical value \(-1\) or
19351935
\(1\) for each classical input \(\vec{x}\) that indentifies the label
@@ -1942,17 +1942,28 @@ <h2 id="what-will-we-need-in-the-case-of-a-quantum-computer">What will we need i
19421942
<h2 id="the-most-general-ansatz">The most general ansatz </h2>
19431943

19441944
<p>Following these steps we can define an ansatz for this kind of problem
1945-
which is \(W(\theta) \mathcal{U}_{\Phi}(\vec{x}) \vert 0 \rangle\).
1945+
which is
19461946
</p>
1947+
<p>&nbsp;<br>
1948+
$$
1949+
W(\theta) \mathcal{U}_{\Phi}(\vec{x}) \vert 0 \rangle.
1950+
$$
1951+
<p>&nbsp;<br>
19471952

1948-
<p>These kind of ansatz are called quantum variational circuits.</p>
1953+
<p>These kind of ansatzes are called quantum variational circuits.</p>
19491954
</section>
19501955

19511956
<section>
19521957
<h2 id="quantum-svm">Quantum SVM </h2>
19531958

1954-
<p>In the case of a quantum SVM we will only used the quantum feature maps
1955-
\(\mathcal{U}_{\Phi(\vec{x})}\) to translate the classical data into
1959+
<p>In the case of a quantum SVM we will only use the quantum feature maps</p>
1960+
<p>&nbsp;<br>
1961+
$$
1962+
\mathcal{U}_{\Phi(\vec{x})},
1963+
$$
1964+
<p>&nbsp;<br>
1965+
1966+
<p>to translate the classical data into
19561967
quantum states and build the Kernel of the SVM out of these quantum
19571968
states. After calculating the Kernel matrix on the quantum computer we
19581969
can train the Quantum SVM the same way as the classical SVM.
@@ -1964,10 +1975,23 @@ <h2 id="defining-the-quantum-kernel">Defining the Quantum Kernel </h2>
19641975

19651976
<p>The idea of the quantum kernel is exactly the same as in the classical
19661977
case. We take the inner product
1967-
\(K(\vec{x}, \vec{z}) = \vert \langle \Phi (\vec{x}) \vert \Phi(\vec{z}) \rangle \vert^2 = \langle 0^n \vert \mathcal{U}_{\Phi(\vec{x})}^{t} \mathcal{U}_{\Phi(\vec{z})} \vert 0^n \rangle\),
1968-
but now with the quantum feature maps \(\mathcal{U}_{\Phi(\vec{x})}\).
1969-
The idea is that if we choose a quantum feature maps that is not easy to
1970-
simulate with a classical computer we might obtain a quantum advantage.
1978+
</p>
1979+
<p>&nbsp;<br>
1980+
$$
1981+
K(\vec{x}, \vec{z}) = \vert \langle \Phi (\vec{x}) \vert \Phi(\vec{z}) \rangle \vert^2 = \langle 0^n \vert \mathcal{U}_{\Phi(\vec{x})}^{t} \mathcal{U}_{\Phi(\vec{z})} \vert 0^n \rangle,
1982+
$$
1983+
<p>&nbsp;<br>
1984+
1985+
<p>but now with the quantum feature maps</p>
1986+
<p>&nbsp;<br>
1987+
$$
1988+
\mathcal{U}_{\Phi(\vec{x})}.
1989+
$$
1990+
<p>&nbsp;<br>
1991+
1992+
<p>The idea is that if we choose a quantum feature maps that is not easy
1993+
to simulate with a classical computer we might obtain a quantum
1994+
advantage.
19711995
</p>
19721996
</section>
19731997

doc/pub/week13/html/week13-solarized.html

Lines changed: 28 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1778,18 +1778,18 @@ <h2 id="what-will-we-need-in-the-case-of-a-quantum-computer">What will we need i
17781778
<p>
17791779
<p>We will have to translate the classical data point \(\vec{x}\)
17801780
into a quantum datapoint \(\vert \Phi{(\vec{x})} \rangle\). This can
1781-
be achieved by a circuit \( \mathcal{U}\_\{\Phi(\vec{x})\} \vert 0\rangle \).
1781+
be achieved by a circuit \( \mathcal{U}_{\Phi(\vec{x})} \vert 0\rangle \).
17821782
</p>
17831783

1784-
<p>Here \(\Phi()\) could be any classical function applied
1785-
on the classical data \(\vec{x}\).
1784+
<p>Here \( \Phi() \) could be any classical function applied
1785+
on the classical data \( \vec{x} \).
17861786
</p>
17871787
</div>
17881788

17891789
<div class="alert alert-block alert-block alert-text-normal">
17901790
<b></b>
17911791
<p>
1792-
<p>We need a parameterized quantum circuit \(W( \theta )\) that
1792+
<p>We need a parameterized quantum circuit \( W(\theta) \) that
17931793
processes the data in a way that in the end we
17941794
can apply a measurement that returns a classical value \(-1\) or
17951795
\(1\) for each classical input \(\vec{x}\) that indentifies the label
@@ -1802,16 +1802,23 @@ <h2 id="what-will-we-need-in-the-case-of-a-quantum-computer">What will we need i
18021802
<h2 id="the-most-general-ansatz">The most general ansatz </h2>
18031803

18041804
<p>Following these steps we can define an ansatz for this kind of problem
1805-
which is \(W(\theta) \mathcal{U}_{\Phi}(\vec{x}) \vert 0 \rangle\).
1805+
which is
18061806
</p>
1807+
$$
1808+
W(\theta) \mathcal{U}_{\Phi}(\vec{x}) \vert 0 \rangle.
1809+
$$
18071810

1808-
<p>These kind of ansatz are called quantum variational circuits.</p>
1811+
<p>These kind of ansatzes are called quantum variational circuits.</p>
18091812

18101813
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
18111814
<h2 id="quantum-svm">Quantum SVM </h2>
18121815

1813-
<p>In the case of a quantum SVM we will only used the quantum feature maps
1814-
\(\mathcal{U}_{\Phi(\vec{x})}\) to translate the classical data into
1816+
<p>In the case of a quantum SVM we will only use the quantum feature maps</p>
1817+
$$
1818+
\mathcal{U}_{\Phi(\vec{x})},
1819+
$$
1820+
1821+
<p>to translate the classical data into
18151822
quantum states and build the Kernel of the SVM out of these quantum
18161823
states. After calculating the Kernel matrix on the quantum computer we
18171824
can train the Quantum SVM the same way as the classical SVM.
@@ -1822,10 +1829,19 @@ <h2 id="defining-the-quantum-kernel">Defining the Quantum Kernel </h2>
18221829

18231830
<p>The idea of the quantum kernel is exactly the same as in the classical
18241831
case. We take the inner product
1825-
\(K(\vec{x}, \vec{z}) = \vert \langle \Phi (\vec{x}) \vert \Phi(\vec{z}) \rangle \vert^2 = \langle 0^n \vert \mathcal{U}_{\Phi(\vec{x})}^{t} \mathcal{U}_{\Phi(\vec{z})} \vert 0^n \rangle\),
1826-
but now with the quantum feature maps \(\mathcal{U}_{\Phi(\vec{x})}\).
1827-
The idea is that if we choose a quantum feature maps that is not easy to
1828-
simulate with a classical computer we might obtain a quantum advantage.
1832+
</p>
1833+
$$
1834+
K(\vec{x}, \vec{z}) = \vert \langle \Phi (\vec{x}) \vert \Phi(\vec{z}) \rangle \vert^2 = \langle 0^n \vert \mathcal{U}_{\Phi(\vec{x})}^{t} \mathcal{U}_{\Phi(\vec{z})} \vert 0^n \rangle,
1835+
$$
1836+
1837+
<p>but now with the quantum feature maps</p>
1838+
$$
1839+
\mathcal{U}_{\Phi(\vec{x})}.
1840+
$$
1841+
1842+
<p>The idea is that if we choose a quantum feature maps that is not easy
1843+
to simulate with a classical computer we might obtain a quantum
1844+
advantage.
18291845
</p>
18301846

18311847
<!-- !split --><br><br><br><br><br><br><br><br><br><br>

doc/pub/week13/html/week13.html

Lines changed: 28 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1855,18 +1855,18 @@ <h2 id="what-will-we-need-in-the-case-of-a-quantum-computer">What will we need i
18551855
<p>
18561856
<p>We will have to translate the classical data point \(\vec{x}\)
18571857
into a quantum datapoint \(\vert \Phi{(\vec{x})} \rangle\). This can
1858-
be achieved by a circuit \( \mathcal{U}\_\{\Phi(\vec{x})\} \vert 0\rangle \).
1858+
be achieved by a circuit \( \mathcal{U}_{\Phi(\vec{x})} \vert 0\rangle \).
18591859
</p>
18601860

1861-
<p>Here \(\Phi()\) could be any classical function applied
1862-
on the classical data \(\vec{x}\).
1861+
<p>Here \( \Phi() \) could be any classical function applied
1862+
on the classical data \( \vec{x} \).
18631863
</p>
18641864
</div>
18651865

18661866
<div class="alert alert-block alert-block alert-text-normal">
18671867
<b></b>
18681868
<p>
1869-
<p>We need a parameterized quantum circuit \(W( \theta )\) that
1869+
<p>We need a parameterized quantum circuit \( W(\theta) \) that
18701870
processes the data in a way that in the end we
18711871
can apply a measurement that returns a classical value \(-1\) or
18721872
\(1\) for each classical input \(\vec{x}\) that indentifies the label
@@ -1879,16 +1879,23 @@ <h2 id="what-will-we-need-in-the-case-of-a-quantum-computer">What will we need i
18791879
<h2 id="the-most-general-ansatz">The most general ansatz </h2>
18801880

18811881
<p>Following these steps we can define an ansatz for this kind of problem
1882-
which is \(W(\theta) \mathcal{U}_{\Phi}(\vec{x}) \vert 0 \rangle\).
1882+
which is
18831883
</p>
1884+
$$
1885+
W(\theta) \mathcal{U}_{\Phi}(\vec{x}) \vert 0 \rangle.
1886+
$$
18841887

1885-
<p>These kind of ansatz are called quantum variational circuits.</p>
1888+
<p>These kind of ansatzes are called quantum variational circuits.</p>
18861889

18871890
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
18881891
<h2 id="quantum-svm">Quantum SVM </h2>
18891892

1890-
<p>In the case of a quantum SVM we will only used the quantum feature maps
1891-
\(\mathcal{U}_{\Phi(\vec{x})}\) to translate the classical data into
1893+
<p>In the case of a quantum SVM we will only use the quantum feature maps</p>
1894+
$$
1895+
\mathcal{U}_{\Phi(\vec{x})},
1896+
$$
1897+
1898+
<p>to translate the classical data into
18921899
quantum states and build the Kernel of the SVM out of these quantum
18931900
states. After calculating the Kernel matrix on the quantum computer we
18941901
can train the Quantum SVM the same way as the classical SVM.
@@ -1899,10 +1906,19 @@ <h2 id="defining-the-quantum-kernel">Defining the Quantum Kernel </h2>
18991906

19001907
<p>The idea of the quantum kernel is exactly the same as in the classical
19011908
case. We take the inner product
1902-
\(K(\vec{x}, \vec{z}) = \vert \langle \Phi (\vec{x}) \vert \Phi(\vec{z}) \rangle \vert^2 = \langle 0^n \vert \mathcal{U}_{\Phi(\vec{x})}^{t} \mathcal{U}_{\Phi(\vec{z})} \vert 0^n \rangle\),
1903-
but now with the quantum feature maps \(\mathcal{U}_{\Phi(\vec{x})}\).
1904-
The idea is that if we choose a quantum feature maps that is not easy to
1905-
simulate with a classical computer we might obtain a quantum advantage.
1909+
</p>
1910+
$$
1911+
K(\vec{x}, \vec{z}) = \vert \langle \Phi (\vec{x}) \vert \Phi(\vec{z}) \rangle \vert^2 = \langle 0^n \vert \mathcal{U}_{\Phi(\vec{x})}^{t} \mathcal{U}_{\Phi(\vec{z})} \vert 0^n \rangle,
1912+
$$
1913+
1914+
<p>but now with the quantum feature maps</p>
1915+
$$
1916+
\mathcal{U}_{\Phi(\vec{x})}.
1917+
$$
1918+
1919+
<p>The idea is that if we choose a quantum feature maps that is not easy
1920+
to simulate with a classical computer we might obtain a quantum
1921+
advantage.
19061922
</p>
19071923

19081924
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
-1 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)