Skip to content

Commit 6235ee1

Browse files
committed
correcting typos
1 parent 58b1a6d commit 6235ee1

File tree

8 files changed

+243
-429
lines changed

8 files changed

+243
-429
lines changed

doc/pub/week7/html/week7-bs.html

Lines changed: 1 addition & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,6 @@
104104
None,
105105
'rewriting-the-string-of-matrices'),
106106
('More rewriting tricks', 2, None, 'more-rewriting-tricks'),
107-
('Example', 2, None, 'example'),
108107
('The $\\boldsymbol{Z}\\otimes \\boldsymbol{I}$ term',
109108
2,
110109
None,
@@ -313,7 +312,6 @@
313312
<!-- navigation toc: --> <li><a href="#rewriting-our-strings-of-pauli-matrices" style="font-size: 80%;">Rewriting our strings of Pauli matrices</a></li>
314313
<!-- navigation toc: --> <li><a href="#rewriting-the-string-of-matrices" style="font-size: 80%;">Rewriting the string of matrices</a></li>
315314
<!-- navigation toc: --> <li><a href="#more-rewriting-tricks" style="font-size: 80%;">More rewriting tricks</a></li>
316-
<!-- navigation toc: --> <li><a href="#example" style="font-size: 80%;">Example</a></li>
317315
<!-- navigation toc: --> <li><a href="#the-boldsymbol-z-otimes-boldsymbol-i-term" style="font-size: 80%;">The \( \boldsymbol{Z}\otimes \boldsymbol{I} \) term</a></li>
318316
<!-- navigation toc: --> <li><a href="#the-specific-eigenvalues" style="font-size: 80%;">The specific eigenvalues</a></li>
319317
<!-- navigation toc: --> <li><a href="#the-boldsymbol-i-otimes-boldsymbol-z-term" style="font-size: 80%;">The \( \boldsymbol{I}\otimes\boldsymbol{Z} \) term</a></li>
@@ -981,7 +979,7 @@ <h2 id="rewriting-the-string-of-matrices" class="anchor">Rewriting the string of
981979
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
982980
<p>Use the fact that \( \sigma_i^2 = I \) and \( \sigma_i \sigma_j = -\sigma_j \sigma_i \) for \( i \neq j \) to simplify the expression. For example:</p>
983981
$$
984-
\boldsymbol{X} \boldsymbol{Y} = -\boldsymbol{Y} \boldsymbol{X} = i \boldsymbol{X}.
982+
\boldsymbol{X} \boldsymbol{Y} = -\boldsymbol{Y} \boldsymbol{X} = i \boldsymbol{Z}.
985983
$$
986984
</div>
987985
</div>
@@ -1008,27 +1006,6 @@ <h2 id="more-rewriting-tricks" class="anchor">More rewriting tricks </h2>
10081006
</div>
10091007

10101008

1011-
<!-- !split -->
1012-
<h2 id="example" class="anchor">Example </h2>
1013-
1014-
<p>A simple example is </p>
1015-
$$
1016-
\boldsymbol{P} = \boldsymbol{X} \boldsymbol{Y} \otimes \boldsymbol{Z}.
1017-
$$
1018-
1019-
<p>To rewrite this for measurement we use the commutation relations to reorder the terms if needed.
1020-
Then we eimplify using identities:
1021-
</p>
1022-
$$
1023-
\boldsymbol{X} \boldsymbol{Y} = i \boldsymbol{Z}.
1024-
$$
1025-
1026-
<p>We obtain then </p>
1027-
$$
1028-
\boldsymbol{P} = (i \boldsymbol{Z}) \otimes \boldsymbol{Z} = i (\boldsymbol{Z} \otimes \boldsymbol{Z}).
1029-
$$
1030-
1031-
10321009
<!-- !split -->
10331010
<h2 id="the-boldsymbol-z-otimes-boldsymbol-i-term" class="anchor">The \( \boldsymbol{Z}\otimes \boldsymbol{I} \) term </h2>
10341011

doc/pub/week7/html/week7-reveal.html

Lines changed: 1 addition & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -815,7 +815,7 @@ <h2 id="rewriting-the-string-of-matrices">Rewriting the string of matrices </h2>
815815
<p>Use the fact that \( \sigma_i^2 = I \) and \( \sigma_i \sigma_j = -\sigma_j \sigma_i \) for \( i \neq j \) to simplify the expression. For example:</p>
816816
<p>&nbsp;<br>
817817
$$
818-
\boldsymbol{X} \boldsymbol{Y} = -\boldsymbol{Y} \boldsymbol{X} = i \boldsymbol{X}.
818+
\boldsymbol{X} \boldsymbol{Y} = -\boldsymbol{Y} \boldsymbol{X} = i \boldsymbol{Z}.
819819
$$
820820
<p>&nbsp;<br>
821821
</div>
@@ -842,33 +842,6 @@ <h2 id="more-rewriting-tricks">More rewriting tricks </h2>
842842
</div>
843843
</section>
844844

845-
<section>
846-
<h2 id="example">Example </h2>
847-
848-
<p>A simple example is </p>
849-
<p>&nbsp;<br>
850-
$$
851-
\boldsymbol{P} = \boldsymbol{X} \boldsymbol{Y} \otimes \boldsymbol{Z}.
852-
$$
853-
<p>&nbsp;<br>
854-
855-
<p>To rewrite this for measurement we use the commutation relations to reorder the terms if needed.
856-
Then we eimplify using identities:
857-
</p>
858-
<p>&nbsp;<br>
859-
$$
860-
\boldsymbol{X} \boldsymbol{Y} = i \boldsymbol{Z}.
861-
$$
862-
<p>&nbsp;<br>
863-
864-
<p>We obtain then </p>
865-
<p>&nbsp;<br>
866-
$$
867-
\boldsymbol{P} = (i \boldsymbol{Z}) \otimes \boldsymbol{Z} = i (\boldsymbol{Z} \otimes \boldsymbol{Z}).
868-
$$
869-
<p>&nbsp;<br>
870-
</section>
871-
872845
<section>
873846
<h2 id="the-boldsymbol-z-otimes-boldsymbol-i-term">The \( \boldsymbol{Z}\otimes \boldsymbol{I} \) term </h2>
874847

doc/pub/week7/html/week7-solarized.html

Lines changed: 1 addition & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -131,7 +131,6 @@
131131
None,
132132
'rewriting-the-string-of-matrices'),
133133
('More rewriting tricks', 2, None, 'more-rewriting-tricks'),
134-
('Example', 2, None, 'example'),
135134
('The $\\boldsymbol{Z}\\otimes \\boldsymbol{I}$ term',
136135
2,
137136
None,
@@ -902,7 +901,7 @@ <h2 id="rewriting-the-string-of-matrices">Rewriting the string of matrices </h2>
902901
<p>
903902
<p>Use the fact that \( \sigma_i^2 = I \) and \( \sigma_i \sigma_j = -\sigma_j \sigma_i \) for \( i \neq j \) to simplify the expression. For example:</p>
904903
$$
905-
\boldsymbol{X} \boldsymbol{Y} = -\boldsymbol{Y} \boldsymbol{X} = i \boldsymbol{X}.
904+
\boldsymbol{X} \boldsymbol{Y} = -\boldsymbol{Y} \boldsymbol{X} = i \boldsymbol{Z}.
906905
$$
907906
</div>
908907

@@ -926,27 +925,6 @@ <h2 id="more-rewriting-tricks">More rewriting tricks </h2>
926925
</div>
927926

928927

929-
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
930-
<h2 id="example">Example </h2>
931-
932-
<p>A simple example is </p>
933-
$$
934-
\boldsymbol{P} = \boldsymbol{X} \boldsymbol{Y} \otimes \boldsymbol{Z}.
935-
$$
936-
937-
<p>To rewrite this for measurement we use the commutation relations to reorder the terms if needed.
938-
Then we eimplify using identities:
939-
</p>
940-
$$
941-
\boldsymbol{X} \boldsymbol{Y} = i \boldsymbol{Z}.
942-
$$
943-
944-
<p>We obtain then </p>
945-
$$
946-
\boldsymbol{P} = (i \boldsymbol{Z}) \otimes \boldsymbol{Z} = i (\boldsymbol{Z} \otimes \boldsymbol{Z}).
947-
$$
948-
949-
950928
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
951929
<h2 id="the-boldsymbol-z-otimes-boldsymbol-i-term">The \( \boldsymbol{Z}\otimes \boldsymbol{I} \) term </h2>
952930

doc/pub/week7/html/week7.html

Lines changed: 1 addition & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -208,7 +208,6 @@
208208
None,
209209
'rewriting-the-string-of-matrices'),
210210
('More rewriting tricks', 2, None, 'more-rewriting-tricks'),
211-
('Example', 2, None, 'example'),
212211
('The $\\boldsymbol{Z}\\otimes \\boldsymbol{I}$ term',
213212
2,
214213
None,
@@ -979,7 +978,7 @@ <h2 id="rewriting-the-string-of-matrices">Rewriting the string of matrices </h2>
979978
<p>
980979
<p>Use the fact that \( \sigma_i^2 = I \) and \( \sigma_i \sigma_j = -\sigma_j \sigma_i \) for \( i \neq j \) to simplify the expression. For example:</p>
981980
$$
982-
\boldsymbol{X} \boldsymbol{Y} = -\boldsymbol{Y} \boldsymbol{X} = i \boldsymbol{X}.
981+
\boldsymbol{X} \boldsymbol{Y} = -\boldsymbol{Y} \boldsymbol{X} = i \boldsymbol{Z}.
983982
$$
984983
</div>
985984

@@ -1003,27 +1002,6 @@ <h2 id="more-rewriting-tricks">More rewriting tricks </h2>
10031002
</div>
10041003

10051004

1006-
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
1007-
<h2 id="example">Example </h2>
1008-
1009-
<p>A simple example is </p>
1010-
$$
1011-
\boldsymbol{P} = \boldsymbol{X} \boldsymbol{Y} \otimes \boldsymbol{Z}.
1012-
$$
1013-
1014-
<p>To rewrite this for measurement we use the commutation relations to reorder the terms if needed.
1015-
Then we eimplify using identities:
1016-
</p>
1017-
$$
1018-
\boldsymbol{X} \boldsymbol{Y} = i \boldsymbol{Z}.
1019-
$$
1020-
1021-
<p>We obtain then </p>
1022-
$$
1023-
\boldsymbol{P} = (i \boldsymbol{Z}) \otimes \boldsymbol{Z} = i (\boldsymbol{Z} \otimes \boldsymbol{Z}).
1024-
$$
1025-
1026-
10271005
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
10281006
<h2 id="the-boldsymbol-z-otimes-boldsymbol-i-term">The \( \boldsymbol{Z}\otimes \boldsymbol{I} \) term </h2>
10291007

0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)