Skip to content

Commit 62307de

Browse files
committed
typos
1 parent 7dd2eba commit 62307de

File tree

8 files changed

+366
-360
lines changed

8 files changed

+366
-360
lines changed

doc/pub/week10/html/week10-bs.html

Lines changed: 21 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -57,23 +57,25 @@
5757
2,
5858
None,
5959
'quantum-fourier-transforms-and-quantum-parallelism'),
60-
('Quantum Fourier Transforms and implementation',
60+
('Quantum Fourier Transforms and implementations',
6161
2,
6262
None,
63-
'quantum-fourier-transforms-and-implementation'),
63+
'quantum-fourier-transforms-and-implementations'),
6464
('Quantum Fourier Transform and Applications in Quantum '
6565
'Computing',
6666
2,
6767
None,
6868
'quantum-fourier-transform-and-applications-in-quantum-computing'),
69-
('Quantum Fourier Transforms and Reduced Memory Complexity',
69+
('Quantum Fourier Transforms and Reduced Memory Complexity (not '
70+
'covered)',
7071
2,
7172
None,
72-
'quantum-fourier-transforms-and-reduced-memory-complexity'),
73-
('Quantum Fourier Transforms Quantum Signal Processing',
73+
'quantum-fourier-transforms-and-reduced-memory-complexity-not-covered'),
74+
('Quantum Fourier Transforms and Quantum Signal Processing (not '
75+
'covered in this course)',
7476
2,
7577
None,
76-
'quantum-fourier-transforms-quantum-signal-processing'),
78+
'quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course'),
7779
('Why Quantum Fourier Transforms? Brief summary',
7880
2,
7981
None,
@@ -268,10 +270,10 @@
268270
<!-- navigation toc: --> <li><a href="#quantum-fourier-transforms-qfts" style="font-size: 80%;"><b>Quantum Fourier Transforms (QFTs)</b></a></li>
269271
<!-- navigation toc: --> <li><a href="#why-quantum-fourier-transforms-and-exponential-speedup" style="font-size: 80%;"><b>Why Quantum Fourier Transforms and exponential speedup</b></a></li>
270272
<!-- navigation toc: --> <li><a href="#quantum-fourier-transforms-and-quantum-parallelism" style="font-size: 80%;"><b>Quantum Fourier Transforms and quantum parallelism</b></a></li>
271-
<!-- navigation toc: --> <li><a href="#quantum-fourier-transforms-and-implementation" style="font-size: 80%;"><b>Quantum Fourier Transforms and implementation</b></a></li>
273+
<!-- navigation toc: --> <li><a href="#quantum-fourier-transforms-and-implementations" style="font-size: 80%;"><b>Quantum Fourier Transforms and implementations</b></a></li>
272274
<!-- navigation toc: --> <li><a href="#quantum-fourier-transform-and-applications-in-quantum-computing" style="font-size: 80%;"><b>Quantum Fourier Transform and Applications in Quantum Computing</b></a></li>
273-
<!-- navigation toc: --> <li><a href="#quantum-fourier-transforms-and-reduced-memory-complexity" style="font-size: 80%;"><b>Quantum Fourier Transforms and Reduced Memory Complexity</b></a></li>
274-
<!-- navigation toc: --> <li><a href="#quantum-fourier-transforms-quantum-signal-processing" style="font-size: 80%;"><b>Quantum Fourier Transforms Quantum Signal Processing</b></a></li>
275+
<!-- navigation toc: --> <li><a href="#quantum-fourier-transforms-and-reduced-memory-complexity-not-covered" style="font-size: 80%;"><b>Quantum Fourier Transforms and Reduced Memory Complexity (not covered)</b></a></li>
276+
<!-- navigation toc: --> <li><a href="#quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course" style="font-size: 80%;"><b>Quantum Fourier Transforms and Quantum Signal Processing (not covered in this course)</b></a></li>
275277
<!-- navigation toc: --> <li><a href="#why-quantum-fourier-transforms-brief-summary" style="font-size: 80%;"><b>Why Quantum Fourier Transforms? Brief summary</b></a></li>
276278
<!-- navigation toc: --> <li><a href="#now-technicalities-reminder-on-fourier-theory-a-familiar-case-first" style="font-size: 80%;"><b>Now technicalities: Reminder on Fourier theory, a familiar case first</b></a></li>
277279
<!-- navigation toc: --> <li><a href="#several-driving-forces" style="font-size: 80%;"><b>Several driving forces</b></a></li>
@@ -457,39 +459,39 @@ <h2 id="why-quantum-fourier-transforms-and-exponential-speedup" class="anchor">W
457459
<h2 id="quantum-fourier-transforms-and-quantum-parallelism" class="anchor">Quantum Fourier Transforms and quantum parallelism </h2>
458460

459461
<ol>
460-
<li> QFTs acts on a <em>superposition</em> of states, processing all inputs simultaneously.</li>
462+
<li> QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously.</li>
461463
<li> This is crucial in algorithms like:
462464
<ol type="a"></li>
463465
<li> Shor&#8217;s Algorithm for factoring large numbers.</li>
464466
<li> Quantum Phase Estimation (QPE) for eigenvalue extraction.</li>
465467
</ol>
466468
</ol>
467469
<!-- !split -->
468-
<h2 id="quantum-fourier-transforms-and-implementation" class="anchor">Quantum Fourier Transforms and implementation </h2>
470+
<h2 id="quantum-fourier-transforms-and-implementations" class="anchor">Quantum Fourier Transforms and implementations </h2>
469471

470472
<ol>
471-
<li> QFT requires only <em>Hadamard gates and controlled-phase gates</em>.</li>
473+
<li> QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li>
472474
<li> A 3-qubit QFT circuit uses only \( O(n^2) \).</li>
473-
<li> This makes QFT highly efficient for <em>quantum hardware</em>.</li>
475+
<li> This makes QFTs highly efficient for <em>quantum hardware</em>.</li>
474476
</ol>
475477
<!-- !split -->
476478
<h2 id="quantum-fourier-transform-and-applications-in-quantum-computing" class="anchor">Quantum Fourier Transform and Applications in Quantum Computing </h2>
477479

478480
<ol>
479481
<li> \textbf{Shor&#8217;s Algorithm:} Uses QFTs to find periodicity in modular exponentiation.</li>
480482
<li> \textbf{Quantum Phase Estimation (QPE):} QFTs extract eigenvalues of unitary matrices.</li>
481-
<li> \textbf{Quantum Signal Processing:} QFTs Enable spectral analysis on quantum data.</li>
483+
<li> \textbf{Quantum Signal Processing:} QFTs enable spectral analysis on quantum data. Important for AI applications.</li>
482484
</ol>
483485
<!-- !split -->
484-
<h2 id="quantum-fourier-transforms-and-reduced-memory-complexity" class="anchor">Quantum Fourier Transforms and Reduced Memory Complexity </h2>
486+
<h2 id="quantum-fourier-transforms-and-reduced-memory-complexity-not-covered" class="anchor">Quantum Fourier Transforms and Reduced Memory Complexity (not covered) </h2>
485487

486488
<ol>
487489
<li> Classical DFTs require \( O(N) \) space.</li>
488490
<li> QFT store Fourier-transformed coefficients <em>implicitly</em> in qubit amplitudes.</li>
489491
<li> Only \( O(n) \) qubits are needed for a size \( N = 2^n \) transformation.</li>
490492
</ol>
491493
<!-- !split -->
492-
<h2 id="quantum-fourier-transforms-quantum-signal-processing" class="anchor">Quantum Fourier Transforms Quantum Signal Processing </h2>
494+
<h2 id="quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course" class="anchor">Quantum Fourier Transforms and Quantum Signal Processing (not covered in this course) </h2>
493495

494496
<p>QFTs enable applications such as:</p>
495497
<ol>
@@ -503,9 +505,9 @@ <h2 id="quantum-fourier-transforms-quantum-signal-processing" class="anchor">Qua
503505
<h2 id="why-quantum-fourier-transforms-brief-summary" class="anchor">Why Quantum Fourier Transforms? Brief summary </h2>
504506

505507
<ol>
506-
<li> Quantum Fourier Transform provides <em>exponential speedup</em></li>
507-
<li> It enables key quantum algorithms like <em>Shor&#8217;s Algorithm</em> and <em>Quantum Phase Estimation</em>.</li>
508-
<li> QFT is more efficient in <em>memory usage and circuit complexity</em> than classical methods.</li>
508+
<li> Quantum Fourier Transforms provide <em>exponential speedup</em></li>
509+
<li> They enable key quantum algorithms like <em>Shor&#8217;s Algorithm</em> and <em>Quantum Phase Estimation</em>.</li>
510+
<li> QFTs are more efficient in <em>memory usage and circuit complexity</em> than classical methods.</li>
509511
<li> Future quantum applications in <em>signal processing, AI, and cryptography</em> will heavily rely on QFT.</li>
510512
</ol>
511513
<!-- !split -->

doc/pub/week10/html/week10-reveal.html

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -269,7 +269,7 @@ <h2 id="why-quantum-fourier-transforms-and-exponential-speedup">Why Quantum Four
269269
<h2 id="quantum-fourier-transforms-and-quantum-parallelism">Quantum Fourier Transforms and quantum parallelism </h2>
270270

271271
<ol>
272-
<p><li> QFTs acts on a <em>superposition</em> of states, processing all inputs simultaneously.</li>
272+
<p><li> QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously.</li>
273273
<p><li> This is crucial in algorithms like:
274274
<ol type="a"></li>
275275
<p><li> Shor&#8217;s Algorithm for factoring large numbers.</li>
@@ -280,12 +280,12 @@ <h2 id="quantum-fourier-transforms-and-quantum-parallelism">Quantum Fourier Tran
280280
</section>
281281

282282
<section>
283-
<h2 id="quantum-fourier-transforms-and-implementation">Quantum Fourier Transforms and implementation </h2>
283+
<h2 id="quantum-fourier-transforms-and-implementations">Quantum Fourier Transforms and implementations </h2>
284284

285285
<ol>
286-
<p><li> QFT requires only <em>Hadamard gates and controlled-phase gates</em>.</li>
286+
<p><li> QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li>
287287
<p><li> A 3-qubit QFT circuit uses only \( O(n^2) \).</li>
288-
<p><li> This makes QFT highly efficient for <em>quantum hardware</em>.</li>
288+
<p><li> This makes QFTs highly efficient for <em>quantum hardware</em>.</li>
289289
</ol>
290290
</section>
291291

@@ -295,12 +295,12 @@ <h2 id="quantum-fourier-transform-and-applications-in-quantum-computing">Quantum
295295
<ol>
296296
<p><li> \textbf{Shor&#8217;s Algorithm:} Uses QFTs to find periodicity in modular exponentiation.</li>
297297
<p><li> \textbf{Quantum Phase Estimation (QPE):} QFTs extract eigenvalues of unitary matrices.</li>
298-
<p><li> \textbf{Quantum Signal Processing:} QFTs Enable spectral analysis on quantum data.</li>
298+
<p><li> \textbf{Quantum Signal Processing:} QFTs enable spectral analysis on quantum data. Important for AI applications.</li>
299299
</ol>
300300
</section>
301301

302302
<section>
303-
<h2 id="quantum-fourier-transforms-and-reduced-memory-complexity">Quantum Fourier Transforms and Reduced Memory Complexity </h2>
303+
<h2 id="quantum-fourier-transforms-and-reduced-memory-complexity-not-covered">Quantum Fourier Transforms and Reduced Memory Complexity (not covered) </h2>
304304

305305
<ol>
306306
<p><li> Classical DFTs require \( O(N) \) space.</li>
@@ -310,7 +310,7 @@ <h2 id="quantum-fourier-transforms-and-reduced-memory-complexity">Quantum Fourie
310310
</section>
311311

312312
<section>
313-
<h2 id="quantum-fourier-transforms-quantum-signal-processing">Quantum Fourier Transforms Quantum Signal Processing </h2>
313+
<h2 id="quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course">Quantum Fourier Transforms and Quantum Signal Processing (not covered in this course) </h2>
314314

315315
<p>QFTs enable applications such as:</p>
316316
<ol>
@@ -326,9 +326,9 @@ <h2 id="quantum-fourier-transforms-quantum-signal-processing">Quantum Fourier Tr
326326
<h2 id="why-quantum-fourier-transforms-brief-summary">Why Quantum Fourier Transforms? Brief summary </h2>
327327

328328
<ol>
329-
<p><li> Quantum Fourier Transform provides <em>exponential speedup</em></li>
330-
<p><li> It enables key quantum algorithms like <em>Shor&#8217;s Algorithm</em> and <em>Quantum Phase Estimation</em>.</li>
331-
<p><li> QFT is more efficient in <em>memory usage and circuit complexity</em> than classical methods.</li>
329+
<p><li> Quantum Fourier Transforms provide <em>exponential speedup</em></li>
330+
<p><li> They enable key quantum algorithms like <em>Shor&#8217;s Algorithm</em> and <em>Quantum Phase Estimation</em>.</li>
331+
<p><li> QFTs are more efficient in <em>memory usage and circuit complexity</em> than classical methods.</li>
332332
<p><li> Future quantum applications in <em>signal processing, AI, and cryptography</em> will heavily rely on QFT.</li>
333333
</ol>
334334
</section>

doc/pub/week10/html/week10-solarized.html

Lines changed: 18 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -84,23 +84,25 @@
8484
2,
8585
None,
8686
'quantum-fourier-transforms-and-quantum-parallelism'),
87-
('Quantum Fourier Transforms and implementation',
87+
('Quantum Fourier Transforms and implementations',
8888
2,
8989
None,
90-
'quantum-fourier-transforms-and-implementation'),
90+
'quantum-fourier-transforms-and-implementations'),
9191
('Quantum Fourier Transform and Applications in Quantum '
9292
'Computing',
9393
2,
9494
None,
9595
'quantum-fourier-transform-and-applications-in-quantum-computing'),
96-
('Quantum Fourier Transforms and Reduced Memory Complexity',
96+
('Quantum Fourier Transforms and Reduced Memory Complexity (not '
97+
'covered)',
9798
2,
9899
None,
99-
'quantum-fourier-transforms-and-reduced-memory-complexity'),
100-
('Quantum Fourier Transforms Quantum Signal Processing',
100+
'quantum-fourier-transforms-and-reduced-memory-complexity-not-covered'),
101+
('Quantum Fourier Transforms and Quantum Signal Processing (not '
102+
'covered in this course)',
101103
2,
102104
None,
103-
'quantum-fourier-transforms-quantum-signal-processing'),
105+
'quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course'),
104106
('Why Quantum Fourier Transforms? Brief summary',
105107
2,
106108
None,
@@ -362,39 +364,39 @@ <h2 id="why-quantum-fourier-transforms-and-exponential-speedup">Why Quantum Four
362364
<h2 id="quantum-fourier-transforms-and-quantum-parallelism">Quantum Fourier Transforms and quantum parallelism </h2>
363365

364366
<ol>
365-
<li> QFTs acts on a <em>superposition</em> of states, processing all inputs simultaneously.</li>
367+
<li> QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously.</li>
366368
<li> This is crucial in algorithms like:
367369
<ol type="a"></li>
368370
<li> Shor&#8217;s Algorithm for factoring large numbers.</li>
369371
<li> Quantum Phase Estimation (QPE) for eigenvalue extraction.</li>
370372
</ol>
371373
</ol>
372374
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
373-
<h2 id="quantum-fourier-transforms-and-implementation">Quantum Fourier Transforms and implementation </h2>
375+
<h2 id="quantum-fourier-transforms-and-implementations">Quantum Fourier Transforms and implementations </h2>
374376

375377
<ol>
376-
<li> QFT requires only <em>Hadamard gates and controlled-phase gates</em>.</li>
378+
<li> QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li>
377379
<li> A 3-qubit QFT circuit uses only \( O(n^2) \).</li>
378-
<li> This makes QFT highly efficient for <em>quantum hardware</em>.</li>
380+
<li> This makes QFTs highly efficient for <em>quantum hardware</em>.</li>
379381
</ol>
380382
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
381383
<h2 id="quantum-fourier-transform-and-applications-in-quantum-computing">Quantum Fourier Transform and Applications in Quantum Computing </h2>
382384

383385
<ol>
384386
<li> \textbf{Shor&#8217;s Algorithm:} Uses QFTs to find periodicity in modular exponentiation.</li>
385387
<li> \textbf{Quantum Phase Estimation (QPE):} QFTs extract eigenvalues of unitary matrices.</li>
386-
<li> \textbf{Quantum Signal Processing:} QFTs Enable spectral analysis on quantum data.</li>
388+
<li> \textbf{Quantum Signal Processing:} QFTs enable spectral analysis on quantum data. Important for AI applications.</li>
387389
</ol>
388390
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
389-
<h2 id="quantum-fourier-transforms-and-reduced-memory-complexity">Quantum Fourier Transforms and Reduced Memory Complexity </h2>
391+
<h2 id="quantum-fourier-transforms-and-reduced-memory-complexity-not-covered">Quantum Fourier Transforms and Reduced Memory Complexity (not covered) </h2>
390392

391393
<ol>
392394
<li> Classical DFTs require \( O(N) \) space.</li>
393395
<li> QFT store Fourier-transformed coefficients <em>implicitly</em> in qubit amplitudes.</li>
394396
<li> Only \( O(n) \) qubits are needed for a size \( N = 2^n \) transformation.</li>
395397
</ol>
396398
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
397-
<h2 id="quantum-fourier-transforms-quantum-signal-processing">Quantum Fourier Transforms Quantum Signal Processing </h2>
399+
<h2 id="quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course">Quantum Fourier Transforms and Quantum Signal Processing (not covered in this course) </h2>
398400

399401
<p>QFTs enable applications such as:</p>
400402
<ol>
@@ -408,9 +410,9 @@ <h2 id="quantum-fourier-transforms-quantum-signal-processing">Quantum Fourier Tr
408410
<h2 id="why-quantum-fourier-transforms-brief-summary">Why Quantum Fourier Transforms? Brief summary </h2>
409411

410412
<ol>
411-
<li> Quantum Fourier Transform provides <em>exponential speedup</em></li>
412-
<li> It enables key quantum algorithms like <em>Shor&#8217;s Algorithm</em> and <em>Quantum Phase Estimation</em>.</li>
413-
<li> QFT is more efficient in <em>memory usage and circuit complexity</em> than classical methods.</li>
413+
<li> Quantum Fourier Transforms provide <em>exponential speedup</em></li>
414+
<li> They enable key quantum algorithms like <em>Shor&#8217;s Algorithm</em> and <em>Quantum Phase Estimation</em>.</li>
415+
<li> QFTs are more efficient in <em>memory usage and circuit complexity</em> than classical methods.</li>
414416
<li> Future quantum applications in <em>signal processing, AI, and cryptography</em> will heavily rely on QFT.</li>
415417
</ol>
416418
<!-- !split --><br><br><br><br><br><br><br><br><br><br>

0 commit comments

Comments
 (0)