You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<!-- navigation toc: --><li><ahref="#quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course" style="font-size: 80%;"><b>Quantum Fourier Transforms and Quantum Signal Processing (not covered in this course)</b></a></li>
<!-- navigation toc: --><li><ahref="#now-technicalities-reminder-on-fourier-theory-a-familiar-case-first" style="font-size: 80%;"><b>Now technicalities: Reminder on Fourier theory, a familiar case first</b></a></li>
<h2id="quantum-fourier-transforms-and-quantum-parallelism" class="anchor">Quantum Fourier Transforms and quantum parallelism </h2>
458
460
459
461
<ol>
460
-
<li> QFTs acts on a <em>superposition</em> of states, processing all inputs simultaneously.</li>
462
+
<li> QFTs act on a <em>superposition</em> of states, processing all inputs simultaneously.</li>
461
463
<li> This is crucial in algorithms like:
462
464
<oltype="a"></li>
463
465
<li> Shor’s Algorithm for factoring large numbers.</li>
464
466
<li> Quantum Phase Estimation (QPE) for eigenvalue extraction.</li>
465
467
</ol>
466
468
</ol>
467
469
<!-- !split -->
468
-
<h2id="quantum-fourier-transforms-and-implementation" class="anchor">Quantum Fourier Transforms and implementation</h2>
470
+
<h2id="quantum-fourier-transforms-and-implementations" class="anchor">Quantum Fourier Transforms and implementations</h2>
469
471
470
472
<ol>
471
-
<li>QFT requires only <em>Hadamard gates and controlled-phase gates</em>.</li>
473
+
<li>QFTs require only <em>Hadamard gates and controlled-phase gates</em>.</li>
472
474
<li> A 3-qubit QFT circuit uses only \( O(n^2) \).</li>
473
-
<li> This makes QFT highly efficient for <em>quantum hardware</em>.</li>
475
+
<li> This makes QFTs highly efficient for <em>quantum hardware</em>.</li>
474
476
</ol>
475
477
<!-- !split -->
476
478
<h2id="quantum-fourier-transform-and-applications-in-quantum-computing" class="anchor">Quantum Fourier Transform and Applications in Quantum Computing </h2>
477
479
478
480
<ol>
479
481
<li> \textbf{Shor’s Algorithm:} Uses QFTs to find periodicity in modular exponentiation.</li>
<li> QFT store Fourier-transformed coefficients <em>implicitly</em> in qubit amplitudes.</li>
489
491
<li> Only \( O(n) \) qubits are needed for a size \( N = 2^n \) transformation.</li>
490
492
</ol>
491
493
<!-- !split -->
492
-
<h2id="quantum-fourier-transforms-quantum-signal-processing" class="anchor">Quantum Fourier Transforms Quantum Signal Processing </h2>
494
+
<h2id="quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course" class="anchor">Quantum Fourier Transforms and Quantum Signal Processing (not covered in this course)</h2>
<h2id="quantum-fourier-transforms-quantum-signal-processing">Quantum Fourier Transforms Quantum Signal Processing </h2>
313
+
<h2id="quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course">Quantum Fourier Transforms and Quantum Signal Processing (not covered in this course)</h2>
<h2id="quantum-fourier-transforms-quantum-signal-processing">Quantum Fourier Transforms Quantum Signal Processing </h2>
399
+
<h2id="quantum-fourier-transforms-and-quantum-signal-processing-not-covered-in-this-course">Quantum Fourier Transforms and Quantum Signal Processing (not covered in this course)</h2>
0 commit comments