You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
where $\epsilon_{ijk}$ is the Levi-Civita symbol. This allows you to move certain Pauli matrices to the left or right in the string.
481
+
!et
482
+
!eblock
483
+
!bblock Simplify using identities:
484
+
Use the fact that $\sigma_i^2 = I$ and $\sigma_i \sigma_j = -\sigma_j \sigma_i$ for $i \neq j$ to simplify the expression. For example:
485
+
!bt
486
+
\[
487
+
\sigma_x \sigma_y = -\sigma_y \sigma_x = i \sigma_z.
488
+
\]
489
+
!et
490
+
!eblock
491
+
!split
492
+
===== More rewriting tricks =====
493
+
494
+
!bblock Group terms:
495
+
Group terms that are easier to measure together. For example, if you have a term like $\sigma_x \otimes \sigma_x$, you can measure both qubits in the $X$-basis simultaneously.
496
+
!eblock
497
+
!bblock Diagonalize if necessary:
498
+
If the final expression is not diagonal, you may need to apply a unitary transformation to diagonalize it before measurement. For example,to measure $\sigma_x$, you can apply the Hadamard gate $H$ to transform it into $\sigma_z$:
499
+
!bt
500
+
\[
501
+
H \sigma_x H = \sigma_z.
502
+
\]
503
+
!et
504
+
!bblock
505
+
!split
506
+
===== Example =====
507
+
508
+
A simple example is
509
+
!bt
510
+
\[
511
+
\bm{P} = \bm{X} \bm{Y} \otimes bm{Z}.
512
+
\]
513
+
!et
514
+
To rewrite this for measurement we use the commutation relations to reorder the terms if needed.
515
+
Then we eimplify using identities:
516
+
!bt
517
+
\[
518
+
\bm{X} \bm{Y} = i \bm{Z}.
519
+
\]
520
+
!et
521
+
522
+
We obtain then
523
+
!bt
524
+
\[
525
+
\bm{P} = (i \bm{Z}) \otimes \bm{Z} = i (\bm{Z} \otimes \bm{Z}).
526
+
\]
527
+
!et
528
+
529
+
!split
530
+
===== The $\bm{Z}\otimes \bm{I}$ term =====
531
+
532
+
The explicit matrix is
533
+
!bt
534
+
\[
535
+
\bm{Z}\otimes \bm{I} = \begin{bmatrix}
536
+
1 & 0 & 0 & 0 \\
537
+
0 & 1 & 0 & 0 \\
538
+
0 & 0 & -1 & 0 \\
539
+
0 & 0 & 0 & -1
540
+
\end{bmatrix}.
541
+
\]
542
+
!et
543
+
544
+
When we perform a measurement on the first qubit, we see that this
545
+
matrix gives us the correct eigenvalues for the first qubit (but not
546
+
for the second one). To see this multiply the above matrix with our
547
+
computational basis states, that is the states $\vert 00\rangle =\vert 0\rangle
548
+
\times \vert 0\rangle$, $\vert 01 \rangle$, $\vert 10\rangle$ and
549
+
$\vert 11\rangle$.
550
+
551
+
!split
552
+
===== The specific eigenvalues =====
553
+
554
+
Multiplying with the $\vert 00\rangle$ state we get
0 commit comments