3939 'sections': [('Plans for the week of April 7-11, 2025',
4040 2,
4141 None,
42- 'plans-for-the-week-of-april-7-11-2025')]}
42+ 'plans-for-the-week-of-april-7-11-2025'),
43+ ('Reminder on the Quantum Fourier transform',
44+ 2,
45+ None,
46+ 'reminder-on-the-quantum-fourier-transform'),
47+ ('Quantum phase estimation algorithm',
48+ 2,
49+ None,
50+ 'quantum-phase-estimation-algorithm'),
51+ ("Brief overview of Shor's algorithm",
52+ 2,
53+ None,
54+ 'brief-overview-of-shor-s-algorithm'),
55+ ('Some history', 2, None, 'some-history'),
56+ ('Problem Statement', 2, None, 'problem-statement'),
57+ ('Reduction to Order-Finding',
58+ 2,
59+ None,
60+ 'reduction-to-order-finding'),
61+ ('Continued Fraction Expansion',
62+ 2,
63+ None,
64+ 'continued-fraction-expansion'),
65+ ('Basics of number theory', 2, None, 'basics-of-number-theory'),
66+ ('QFTs again', 2, None, 'qfts-again'),
67+ ('Quantum Period Finding', 2, None, 'quantum-period-finding'),
68+ ('Applying Quantum Fourier Transform (QFT)',
69+ 2,
70+ None,
71+ 'applying-quantum-fourier-transform-qft'),
72+ ('Classical Post-Processing',
73+ 2,
74+ None,
75+ 'classical-post-processing'),
76+ ('Complexity and Practical Considerations',
77+ 2,
78+ None,
79+ 'complexity-and-practical-considerations'),
80+ ('Error Analysis and Success Probability',
81+ 2,
82+ None,
83+ 'error-analysis-and-success-probability'),
84+ ("Summarizing Shor's algorithm",
85+ 2,
86+ None,
87+ 'summarizing-shor-s-algorithm')]}
4388end of tocinfo -->
4489
4590< body >
91+
92+
93+
94+ < script type ="text/x-mathjax-config ">
95+ MathJax . Hub . Config ( {
96+ TeX : {
97+ equationNumbers : { autoNumber : "AMS" } ,
98+ extensions : [ "AMSmath.js" , "AMSsymbols.js" , "autobold.js" , "color.js" ]
99+ }
100+ } ) ;
101+ </ script >
102+ < script type ="text/javascript " async
103+ src ="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML ">
104+ </ script >
105+
106+
46107<!-- Bootstrap navigation bar -->
47108< div class ="navbar navbar-default navbar-fixed-top ">
48109 < div class ="navbar-header ">
59120 < a href ="# " class ="dropdown-toggle " data-toggle ="dropdown "> Contents < b class ="caret "> </ b > </ a >
60121 < ul class ="dropdown-menu ">
61122 <!-- navigation toc: --> < li > < a href ="#plans-for-the-week-of-april-7-11-2025 " style ="font-size: 80%; "> Plans for the week of April 7-11, 2025</ a > </ li >
123+ <!-- navigation toc: --> < li > < a href ="#reminder-on-the-quantum-fourier-transform " style ="font-size: 80%; "> Reminder on the Quantum Fourier transform</ a > </ li >
124+ <!-- navigation toc: --> < li > < a href ="#quantum-phase-estimation-algorithm " style ="font-size: 80%; "> Quantum phase estimation algorithm</ a > </ li >
125+ <!-- navigation toc: --> < li > < a href ="#brief-overview-of-shor-s-algorithm " style ="font-size: 80%; "> Brief overview of Shor's algorithm</ a > </ li >
126+ <!-- navigation toc: --> < li > < a href ="#some-history " style ="font-size: 80%; "> Some history</ a > </ li >
127+ <!-- navigation toc: --> < li > < a href ="#problem-statement " style ="font-size: 80%; "> Problem Statement</ a > </ li >
128+ <!-- navigation toc: --> < li > < a href ="#reduction-to-order-finding " style ="font-size: 80%; "> Reduction to Order-Finding</ a > </ li >
129+ <!-- navigation toc: --> < li > < a href ="#continued-fraction-expansion " style ="font-size: 80%; "> Continued Fraction Expansion</ a > </ li >
130+ <!-- navigation toc: --> < li > < a href ="#basics-of-number-theory " style ="font-size: 80%; "> Basics of number theory</ a > </ li >
131+ <!-- navigation toc: --> < li > < a href ="#qfts-again " style ="font-size: 80%; "> QFTs again</ a > </ li >
132+ <!-- navigation toc: --> < li > < a href ="#quantum-period-finding " style ="font-size: 80%; "> Quantum Period Finding</ a > </ li >
133+ <!-- navigation toc: --> < li > < a href ="#applying-quantum-fourier-transform-qft " style ="font-size: 80%; "> Applying Quantum Fourier Transform (QFT)</ a > </ li >
134+ <!-- navigation toc: --> < li > < a href ="#classical-post-processing " style ="font-size: 80%; "> Classical Post-Processing</ a > </ li >
135+ <!-- navigation toc: --> < li > < a href ="#complexity-and-practical-considerations " style ="font-size: 80%; "> Complexity and Practical Considerations</ a > </ li >
136+ <!-- navigation toc: --> < li > < a href ="#error-analysis-and-success-probability " style ="font-size: 80%; "> Error Analysis and Success Probability</ a > </ li >
137+ <!-- navigation toc: --> < li > < a href ="#summarizing-shor-s-algorithm " style ="font-size: 80%; "> Summarizing Shor's algorithm</ a > </ li >
62138
63139 </ ul >
64140 </ li >
@@ -98,13 +174,163 @@ <h2 id="plans-for-the-week-of-april-7-11-2025" class="anchor">Plans for the week
98174< div class ="panel-body ">
99175<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
100176< ol >
101- < li > TBA</ li >
102- < li > < a href ="https://youtu.be/ " target ="_self "> Video of lecture TBA</ a >
177+ < li > Quantum phase estimation algorithm, final derivation and discussions</ li >
178+ < li > Brief discussion of Shor's algorithm</ li >
179+ < li > Reading recommendation: Hundt section 6.4 for the QPE and section 6.5 for Shor's algorithm
180+ <!-- o <a href="https://youtu.be/" target="_self">Video of lecture TBA</a> -->
103181<!-- o <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2024/NotesApril10.pdf" target="_self">Whiteboard notes</a> --> </ li >
104182</ ol >
105183</ div >
106184</ div >
107185
186+
187+ <!-- !split -->
188+ < h2 id ="reminder-on-the-quantum-fourier-transform " class ="anchor "> Reminder on the Quantum Fourier transform </ h2 >
189+
190+ <!-- !split -->
191+ < h2 id ="quantum-phase-estimation-algorithm " class ="anchor "> Quantum phase estimation algorithm </ h2 >
192+
193+ <!-- !split -->
194+ < h2 id ="brief-overview-of-shor-s-algorithm " class ="anchor "> Brief overview of Shor's algorithm </ h2 >
195+
196+ < ol >
197+ < li > Shor's algorithm is a quantum algorithm for integer factorization.</ li >
198+ < li > It efficiently factors large integers by leveraging quantum period finding.</ li >
199+ < li > Exponential speedup over the best-known classical algorithms.</ li >
200+ < li > Breaks RSA encryption, which relies on the difficulty of factoring.</ li >
201+ </ ol >
202+ <!-- !split -->
203+ < h2 id ="some-history " class ="anchor "> Some history </ h2 >
204+
205+ < p > Shor's algorithm, introduced by Peter Shor in 1994, revolutionized the
206+ field of cryptography. It demonstrated that a quantum computer could
207+ solve integer factorization and the discrete logarithm problem
208+ efficiently, posing a significant threat to classical cryptosystems
209+ such as RSA.
210+ </ p >
211+
212+ <!-- !split -->
213+ < h2 id ="problem-statement " class ="anchor "> Problem Statement </ h2 >
214+
215+ < p > The objective of Shor's algorithm is to factorize a large composite
216+ integer \( N \) into its prime factors. Given \( N = p \times q \),
217+ where \( p \) and \( q \) are unknown distinct primes, the problem of
218+ factorization can be reduced to finding an integer \( a \) such that
219+ \( 1 < a < N \) and \( \gcd(a, N) = 1 \).
220+ </ p >
221+
222+ <!-- !split -->
223+ < h2 id ="reduction-to-order-finding " class ="anchor "> Reduction to Order-Finding </ h2 >
224+
225+ < p > The key reduction in Shor's algorithm lies in transforming
226+ factorization into an order-finding problem:
227+ </ p >
228+
229+ < ol >
230+ < li > Choose a random integer \( a \) such that \( 1 < a < N \) and \( \gcd(a, N) = 1 \). </ li >
231+ < li > Determine the smallest positive integer \( r \) such that \( a^r \equiv 1 \pmod{N} \).</ li >
232+ </ ol >
233+ < p > The integer \( r \) is known as the \textit{order} of \( a \) modulo
234+ \( N \), and it helps in discovering the factors of \( N \).
235+ </ p >
236+
237+ <!-- !split -->
238+ < h2 id ="continued-fraction-expansion " class ="anchor "> Continued Fraction Expansion </ h2 >
239+
240+ < p > After obtaining the rational approximation from the quantum algorithm,
241+ classical computation using continued fraction expansion aids in
242+ deducing the correct order \( r \).
243+ </ p >
244+
245+ <!-- !split -->
246+ < h2 id ="basics-of-number-theory " class ="anchor "> Basics of number theory </ h2 >
247+
248+ < ol >
249+ < li > The problem: Factor an integer \( N \) into its prime factors.</ li >
250+ < li > Reduce factoring to period finding \( f(x) = a^x \mod N \), where \( a \) is randomly chosen such that \( \gcd(a, N) = 1 \).</ li >
251+ < li > The period \( r \) satisfies \( a^r \equiv 1 \mod N \).</ li >
252+ < li > Once \( r \) is known, factors are given by \( \gcd(a^{r/2} \pm 1, N) \).</ li >
253+ </ ol >
254+ <!-- !split -->
255+ < h2 id ="qfts-again " class ="anchor "> QFTs again </ h2 >
256+
257+ < p > The Quantum Fourier Transform is crucial to Shor's algorithm. It
258+ leverages quantum parallelism and interference to efficiently estimate
259+ the periodicity of a function.
260+ </ p >
261+ $$
262+ \text{QFT}: \vert x\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n-1} e^{2\pi ixy/2^n} \vert y\rangle
263+ $$
264+
265+ < p > The quantum part of Shor's algorithm is designed to find the period \(
266+ r \) of the modular exponentiation function \( f(x) = a^x \bmod N \):
267+ </ p >
268+
269+ <!-- !split -->
270+ < h2 id ="quantum-period-finding " class ="anchor "> Quantum Period Finding </ h2 >
271+ < p > Quantum Period Finding: Key to Shor's Algorithm</ p >
272+
273+ < ol >
274+ < li > Quantum subroutine for finding the period \( r \) of \( f(x) \).</ li >
275+ < li > Similar to Quantum Phase Estimation (QPE).</ li >
276+ < li > Uses two quantum registers:</ li >
277+ < ul >
278+ < li > First register: Superposition of all possible inputs \( x \).</ li >
279+ < li > Second register: Computes \( f(x) = a^x \mod N \).</ li >
280+ </ ul >
281+ </ ol >
282+ <!-- !split -->
283+ < h2 id ="applying-quantum-fourier-transform-qft " class ="anchor "> Applying Quantum Fourier Transform (QFT) </ h2 >
284+
285+ < ol >
286+ < li > The QFT is applied to the first register after the controlled unitary operations.</ li >
287+ < li > Peaks in the measurement correspond to multiples of \( 1/r \).</ li >
288+ < li > Post-processing classically determines \( r \) by continued fractions.</ li >
289+ </ ol >
290+ <!-- !split -->
291+ < h2 id ="classical-post-processing " class ="anchor "> Classical Post-Processing </ h2 >
292+
293+ < ol >
294+ < li > Once \( r \) is found, factors of \( N \) are computed by \( \gcd(a^{r/2} \pm 1, N) \).</ li >
295+ < li > If \( r \) is odd or \( a^{r/2} \equiv -1 \mod N \), try a different \( a \).</ li >
296+ < li > With high probability, this yields a non-trivial factor of \( N \).</ li >
297+ </ ol >
298+ <!-- !split -->
299+ < h2 id ="complexity-and-practical-considerations " class ="anchor "> Complexity and Practical Considerations </ h2 >
300+
301+ < ol >
302+ < li > Quantum Complexity: Polynomial in \( \log N \).</ li >
303+ < li > Classical Best Known: Sub-exponential (Number Field Sieve).</ li >
304+ < li > Quantum Advantage: Exponential speedup over classical algorithms.</ li >
305+ < li > Practical Challenges: Quantum error correction, large qubit counts.</ li >
306+ </ ol >
307+ <!-- !split -->
308+ < h2 id ="error-analysis-and-success-probability " class ="anchor "> Error Analysis and Success Probability </ h2 >
309+
310+ < p > The probability that a randomly chosen \( a \) leads to successful
311+ factoring is generally greater than 50\%. The quantum component
312+ requires carefully managed resources for high precision.
313+ </ p >
314+
315+ < p > Error correction is crucial, as any errors in operations or QFT can
316+ significantly impact the accuracy of period estimation and the
317+ eventual factorization.
318+ </ p >
319+
320+ <!-- !split -->
321+ < h2 id ="summarizing-shor-s-algorithm " class ="anchor "> Summarizing Shor's algorithm </ h2 >
322+
323+ < p > Shor's algorithm is a central quantum algorithm demonstrating
324+ exponential speedup over classical counterparts. It brought both
325+ excitement for potential quantum advancements and a reconsideration of
326+ current cryptographic standards.
327+ </ p >
328+
329+ < ol >
330+ < li > Shor's algorithm is a groundbreaking quantum algorithm for factoring.</ li >
331+ < li > Combines quantum period finding with classical number theory.</ li >
332+ < li > Highlights the potential of quantum computing to break RSA.</ li >
333+ </ ol >
108334<!-- ------------------- end of main content --------------- -->
109335</ div > <!-- end container -->
110336<!-- include javascript, jQuery *first* -->
@@ -116,7 +342,7 @@ <h2 id="plans-for-the-week-of-april-7-11-2025" class="anchor">Plans for the week
116342</footer>
117343-->
118344< center style ="font-size:80% ">
119- <!-- copyright --> © 1999-2024 , Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
345+ <!-- copyright --> © 1999-2025 , Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
120346</ center >
121347</ body >
122348</ html >
0 commit comments