Skip to content

Commit 553c73f

Browse files
committed
update week 11
1 parent 9209795 commit 553c73f

File tree

12 files changed

+1425
-3162
lines changed

12 files changed

+1425
-3162
lines changed

doc/pub/week11/html/week11-bs.html

Lines changed: 219 additions & 445 deletions
Large diffs are not rendered by default.

doc/pub/week11/html/week11-reveal.html

Lines changed: 202 additions & 449 deletions
Large diffs are not rendered by default.

doc/pub/week11/html/week11-solarized.html

Lines changed: 211 additions & 419 deletions
Large diffs are not rendered by default.

doc/pub/week11/html/week11.html

Lines changed: 211 additions & 419 deletions
Large diffs are not rendered by default.
-1 Bytes
Binary file not shown.

doc/pub/week11/ipynb/week11.ipynb

Lines changed: 342 additions & 1026 deletions
Large diffs are not rendered by default.

doc/pub/week11/pdf/week11.pdf

-31.1 KB
Binary file not shown.
Lines changed: 91 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,91 @@
1+
\documentclass{beamer}
2+
3+
\usepackage{amsmath, amssymb, braket, tikz}
4+
\usetikzlibrary{quantikz}
5+
6+
\title{Quantum Fourier Transform (QFT) on Two Qubits}
7+
\author{MHJ}
8+
\date{\today}
9+
10+
\begin{document}
11+
12+
\begin{frame}
13+
\titlepage
14+
\end{frame}
15+
16+
% Slide 1: Introduction
17+
\begin{frame}{Introduction}
18+
\textbf{Quantum Fourier Transform (QFT)}
19+
\begin{itemize}
20+
\item Quantum analogue of the Discrete Fourier Transform (DFT).
21+
\item Used in quantum algorithms like Shor's algorithm and phase estimation.
22+
\item Converts computational basis states into a superposition of phases.
23+
\end{itemize}
24+
\end{frame}
25+
26+
% Slide 2: Definition
27+
\begin{frame}{Definition of QFT}
28+
The QFT on an \( n \)-qubit system is defined as:
29+
\[
30+
\text{QFT} \ket{x} = \frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n-1} e^{2\pi i xy / 2^n} \ket{y}
31+
\]
32+
where \( x \) is the input integer in binary representation.
33+
\end{frame}
34+
35+
% Slide 3: QFT on Two Qubits
36+
\begin{frame}{QFT on Two Qubits}
37+
For a two-qubit system (\( n=2 \)), the QFT transformation is:
38+
\[
39+
\text{QFT} \ket{x_1 x_0} = \frac{1}{2} \sum_{y=0}^{3} e^{2\pi i x y / 4} \ket{y}
40+
\]
41+
where \( x = x_1 x_0 \) (binary representation).
42+
\end{frame}
43+
44+
45+
46+
% Slide 5: Matrix Representation
47+
\begin{frame}{Matrix Representation}
48+
The QFT on two qubits has the matrix:
49+
\[
50+
U_{\text{QFT}} = \frac{1}{2}
51+
\begin{bmatrix}
52+
1 & 1 & 1 & 1 \\
53+
1 & i & -1 & -i \\
54+
1 & -1 & 1 & -1 \\
55+
1 & -i & -1 & i
56+
\end{bmatrix}
57+
\]
58+
\end{frame}
59+
60+
% Slide 6: Example Calculation
61+
\begin{frame}{Example Calculation}
62+
Applying QFT to \( \ket{10} \) (binary 2):
63+
\[
64+
\text{QFT} \ket{10} = \frac{1}{2} (\ket{0} + i\ket{1} - \ket{2} - i\ket{3})
65+
\]
66+
\end{frame}
67+
68+
% Slide 7: Conclusion
69+
\begin{frame}{Conclusion}
70+
\begin{itemize}
71+
\item The QFT transforms basis states into Fourier superpositions.
72+
\item Two-qubit QFT involves Hadamards, phase gates, and a SWAP.
73+
\item It is essential for quantum algorithms like phase estimation.
74+
\end{itemize}
75+
\end{frame}
76+
77+
\end{document}
78+
% Slide 4: Quantum Circuit
79+
\begin{frame}{Quantum Circuit for QFT (2 Qubits)}
80+
\begin{center}
81+
\begin{quantikz}
82+
\lstick{\ket{x_1}} & \gate{H} & \ctrl{1} & \qw & \swap{1} & \qw \\
83+
\lstick{\ket{x_0}} & \gate{H} & \gate{R_2} & \qw & \targX{} & \qw
84+
\end{quantikz}
85+
\end{center}
86+
\begin{itemize}
87+
\item Hadamard $H$ applies equal superposition.
88+
% \item $R_2$ is the controlled phase gate: $R_2 = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{bmatrix}$.
89+
% \item The final SWAP reorders the qubits.
90+
\end{itemize}
91+
\end{frame}

doc/src/week11/prograns/untitled.py

Whitespace-only changes.

doc/src/week11/prograns/untitled.txt

Whitespace-only changes.

0 commit comments

Comments
 (0)