Skip to content

Commit 5469e23

Browse files
committed
update week 16
1 parent 398f0e1 commit 5469e23

File tree

8 files changed

+232
-106
lines changed

8 files changed

+232
-106
lines changed

doc/pub/week16/html/week16-bs.html

Lines changed: 24 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,8 @@
118118
('Summary of steps in PennyLane implementation',
119119
2,
120120
None,
121-
'summary-of-steps-in-pennylane-implementation')]}
121+
'summary-of-steps-in-pennylane-implementation'),
122+
('References on QBMs', 2, None, 'references-on-qbms')]}
122123
end of tocinfo -->
123124

124125
<body>
@@ -185,6 +186,7 @@
185186
<!-- navigation toc: --> <li><a href="#training-of-a-qbm" style="font-size: 80%;">Training of a QBM</a></li>
186187
<!-- navigation toc: --> <li><a href="#more-code-examples" style="font-size: 80%;">More code examples</a></li>
187188
<!-- navigation toc: --> <li><a href="#summary-of-steps-in-pennylane-implementation" style="font-size: 80%;">Summary of steps in PennyLane implementation</a></li>
189+
<!-- navigation toc: --> <li><a href="#references-on-qbms" style="font-size: 80%;">References on QBMs</a></li>
188190

189191
</ul>
190192
</li>
@@ -1073,6 +1075,27 @@ <h2 id="summary-of-steps-in-pennylane-implementation" class="anchor">Summary of
10731075
</ol>
10741076
<p>Use an optimizer (e.g. gradient descent, Adam) with PennyLane&#8217;s gradient calculations to update parameters.</p>
10751077

1078+
<!-- !split -->
1079+
<h2 id="references-on-qbms" class="anchor">References on QBMs </h2>
1080+
1081+
<div class="panel panel-default">
1082+
<div class="panel-body">
1083+
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
1084+
<ol>
1085+
<li> Amin et al., 2018. Quantum Boltzmann Machine, Phys. Rev. X 8, 021050. (Introduced the QBM and training bounds .)</li>
1086+
<li> Wu et al., 2020. Quantum restricted Boltzmann machine is universal for quantum computation, arXiv:2005.11970. (Defined the 2-local QRBM Hamiltonian and demonstrated its universality .)</li>
1087+
<li> Huijgen et al., 2024. Training Quantum Boltzmann Machines with the beta-VQE, arXiv:2304.08631. (Presented the nested variational training algorithm .)</li>
1088+
<li> Coopmans &amp; Benedetti, 2024. On the sample complexity of quantum Boltzmann machine learning, Commun. Phys. 7, 274. (Theoretical analysis of relative-entropy training and sample complexity .)</li>
1089+
<li> Minervini et al., 2025. Evolved Quantum Boltzmann Machines, arXiv:2501.03367. (Proposed the eQBM ansatz mixing imaginary and real time evolution .)</li>
1090+
<li> Nicosia et al., 2025. Expressive equivalence of classical and quantum RBMs, arXiv:2502.17562. (Introduced semi-quantum RBMs (sqRBMs) with commuting visible terms and non-commuting hidden terms; showed structural relationships with classical RBMs .)</li>
1091+
<li> Stein et al., 2023. Unsupervised anomaly detection with Quantum Boltzmann Machines, IEEE QWeek (preprint arXiv:2306.04998). (Applied QBMs to fraud/anomaly detection; found QBMs could outperform classical RBMs on synthetic cybersecurity data .)</li>
1092+
<li> Moro &amp; Prati, 2023. Anomaly detection speed-up by quantum restricted Boltzmann machines, Commun. Phys. 6, 269. (Demonstrated classical vs. quantum training loops on real datasets and observed large sampling speed-ups on a quantum annealer .)</li>
1093+
<li> Sinno et al., 2025. Implementing Large Quantum Boltzmann Machines for Dataset Balancing, arXiv:2502.03086. (Embedded a 120&#215;120 QRBM on D-Wave Pegasus to generate millions of intrusion-detection samples, improving downstream classifier performance .)</li>
1094+
</ol>
1095+
</div>
1096+
</div>
1097+
1098+
10761099
<!-- ------------------- end of main content --------------- -->
10771100
</div> <!-- end container -->
10781101
<!-- include javascript, jQuery *first* -->

doc/pub/week16/html/week16-reveal.html

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1139,6 +1139,26 @@ <h2 id="summary-of-steps-in-pennylane-implementation">Summary of steps in PennyL
11391139
<p>Use an optimizer (e.g. gradient descent, Adam) with PennyLane&#8217;s gradient calculations to update parameters.</p>
11401140
</section>
11411141

1142+
<section>
1143+
<h2 id="references-on-qbms">References on QBMs </h2>
1144+
1145+
<div class="alert alert-block alert-block alert-text-normal">
1146+
<b></b>
1147+
<p>
1148+
<ol>
1149+
<p><li> Amin et al., 2018. Quantum Boltzmann Machine, Phys. Rev. X 8, 021050. (Introduced the QBM and training bounds .)</li>
1150+
<p><li> Wu et al., 2020. Quantum restricted Boltzmann machine is universal for quantum computation, arXiv:2005.11970. (Defined the 2-local QRBM Hamiltonian and demonstrated its universality .)</li>
1151+
<p><li> Huijgen et al., 2024. Training Quantum Boltzmann Machines with the beta-VQE, arXiv:2304.08631. (Presented the nested variational training algorithm .)</li>
1152+
<p><li> Coopmans &amp; Benedetti, 2024. On the sample complexity of quantum Boltzmann machine learning, Commun. Phys. 7, 274. (Theoretical analysis of relative-entropy training and sample complexity .)</li>
1153+
<p><li> Minervini et al., 2025. Evolved Quantum Boltzmann Machines, arXiv:2501.03367. (Proposed the eQBM ansatz mixing imaginary and real time evolution .)</li>
1154+
<p><li> Nicosia et al., 2025. Expressive equivalence of classical and quantum RBMs, arXiv:2502.17562. (Introduced semi-quantum RBMs (sqRBMs) with commuting visible terms and non-commuting hidden terms; showed structural relationships with classical RBMs .)</li>
1155+
<p><li> Stein et al., 2023. Unsupervised anomaly detection with Quantum Boltzmann Machines, IEEE QWeek (preprint arXiv:2306.04998). (Applied QBMs to fraud/anomaly detection; found QBMs could outperform classical RBMs on synthetic cybersecurity data .)</li>
1156+
<p><li> Moro &amp; Prati, 2023. Anomaly detection speed-up by quantum restricted Boltzmann machines, Commun. Phys. 6, 269. (Demonstrated classical vs. quantum training loops on real datasets and observed large sampling speed-ups on a quantum annealer .)</li>
1157+
<p><li> Sinno et al., 2025. Implementing Large Quantum Boltzmann Machines for Dataset Balancing, arXiv:2502.03086. (Embedded a 120&#215;120 QRBM on D-Wave Pegasus to generate millions of intrusion-detection samples, improving downstream classifier performance .)</li>
1158+
</ol>
1159+
</div>
1160+
</section>
1161+
11421162

11431163

11441164
</div> <!-- class="slides" -->

doc/pub/week16/html/week16-solarized.html

Lines changed: 22 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,8 @@
145145
('Summary of steps in PennyLane implementation',
146146
2,
147147
None,
148-
'summary-of-steps-in-pennylane-implementation')]}
148+
'summary-of-steps-in-pennylane-implementation'),
149+
('References on QBMs', 2, None, 'references-on-qbms')]}
149150
end of tocinfo -->
150151

151152
<body>
@@ -1035,6 +1036,26 @@ <h2 id="summary-of-steps-in-pennylane-implementation">Summary of steps in PennyL
10351036
</ol>
10361037
<p>Use an optimizer (e.g. gradient descent, Adam) with PennyLane&#8217;s gradient calculations to update parameters.</p>
10371038

1039+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
1040+
<h2 id="references-on-qbms">References on QBMs </h2>
1041+
1042+
<div class="alert alert-block alert-block alert-text-normal">
1043+
<b></b>
1044+
<p>
1045+
<ol>
1046+
<li> Amin et al., 2018. Quantum Boltzmann Machine, Phys. Rev. X 8, 021050. (Introduced the QBM and training bounds .)</li>
1047+
<li> Wu et al., 2020. Quantum restricted Boltzmann machine is universal for quantum computation, arXiv:2005.11970. (Defined the 2-local QRBM Hamiltonian and demonstrated its universality .)</li>
1048+
<li> Huijgen et al., 2024. Training Quantum Boltzmann Machines with the beta-VQE, arXiv:2304.08631. (Presented the nested variational training algorithm .)</li>
1049+
<li> Coopmans &amp; Benedetti, 2024. On the sample complexity of quantum Boltzmann machine learning, Commun. Phys. 7, 274. (Theoretical analysis of relative-entropy training and sample complexity .)</li>
1050+
<li> Minervini et al., 2025. Evolved Quantum Boltzmann Machines, arXiv:2501.03367. (Proposed the eQBM ansatz mixing imaginary and real time evolution .)</li>
1051+
<li> Nicosia et al., 2025. Expressive equivalence of classical and quantum RBMs, arXiv:2502.17562. (Introduced semi-quantum RBMs (sqRBMs) with commuting visible terms and non-commuting hidden terms; showed structural relationships with classical RBMs .)</li>
1052+
<li> Stein et al., 2023. Unsupervised anomaly detection with Quantum Boltzmann Machines, IEEE QWeek (preprint arXiv:2306.04998). (Applied QBMs to fraud/anomaly detection; found QBMs could outperform classical RBMs on synthetic cybersecurity data .)</li>
1053+
<li> Moro &amp; Prati, 2023. Anomaly detection speed-up by quantum restricted Boltzmann machines, Commun. Phys. 6, 269. (Demonstrated classical vs. quantum training loops on real datasets and observed large sampling speed-ups on a quantum annealer .)</li>
1054+
<li> Sinno et al., 2025. Implementing Large Quantum Boltzmann Machines for Dataset Balancing, arXiv:2502.03086. (Embedded a 120&#215;120 QRBM on D-Wave Pegasus to generate millions of intrusion-detection samples, improving downstream classifier performance .)</li>
1055+
</ol>
1056+
</div>
1057+
1058+
10381059
<!-- ------------------- end of main content --------------- -->
10391060
<center style="font-size:80%">
10401061
<!-- copyright --> &copy; 1999-2025, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

doc/pub/week16/html/week16.html

Lines changed: 22 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -222,7 +222,8 @@
222222
('Summary of steps in PennyLane implementation',
223223
2,
224224
None,
225-
'summary-of-steps-in-pennylane-implementation')]}
225+
'summary-of-steps-in-pennylane-implementation'),
226+
('References on QBMs', 2, None, 'references-on-qbms')]}
226227
end of tocinfo -->
227228

228229
<body>
@@ -1112,6 +1113,26 @@ <h2 id="summary-of-steps-in-pennylane-implementation">Summary of steps in PennyL
11121113
</ol>
11131114
<p>Use an optimizer (e.g. gradient descent, Adam) with PennyLane&#8217;s gradient calculations to update parameters.</p>
11141115

1116+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
1117+
<h2 id="references-on-qbms">References on QBMs </h2>
1118+
1119+
<div class="alert alert-block alert-block alert-text-normal">
1120+
<b></b>
1121+
<p>
1122+
<ol>
1123+
<li> Amin et al., 2018. Quantum Boltzmann Machine, Phys. Rev. X 8, 021050. (Introduced the QBM and training bounds .)</li>
1124+
<li> Wu et al., 2020. Quantum restricted Boltzmann machine is universal for quantum computation, arXiv:2005.11970. (Defined the 2-local QRBM Hamiltonian and demonstrated its universality .)</li>
1125+
<li> Huijgen et al., 2024. Training Quantum Boltzmann Machines with the beta-VQE, arXiv:2304.08631. (Presented the nested variational training algorithm .)</li>
1126+
<li> Coopmans &amp; Benedetti, 2024. On the sample complexity of quantum Boltzmann machine learning, Commun. Phys. 7, 274. (Theoretical analysis of relative-entropy training and sample complexity .)</li>
1127+
<li> Minervini et al., 2025. Evolved Quantum Boltzmann Machines, arXiv:2501.03367. (Proposed the eQBM ansatz mixing imaginary and real time evolution .)</li>
1128+
<li> Nicosia et al., 2025. Expressive equivalence of classical and quantum RBMs, arXiv:2502.17562. (Introduced semi-quantum RBMs (sqRBMs) with commuting visible terms and non-commuting hidden terms; showed structural relationships with classical RBMs .)</li>
1129+
<li> Stein et al., 2023. Unsupervised anomaly detection with Quantum Boltzmann Machines, IEEE QWeek (preprint arXiv:2306.04998). (Applied QBMs to fraud/anomaly detection; found QBMs could outperform classical RBMs on synthetic cybersecurity data .)</li>
1130+
<li> Moro &amp; Prati, 2023. Anomaly detection speed-up by quantum restricted Boltzmann machines, Commun. Phys. 6, 269. (Demonstrated classical vs. quantum training loops on real datasets and observed large sampling speed-ups on a quantum annealer .)</li>
1131+
<li> Sinno et al., 2025. Implementing Large Quantum Boltzmann Machines for Dataset Balancing, arXiv:2502.03086. (Embedded a 120&#215;120 QRBM on D-Wave Pegasus to generate millions of intrusion-detection samples, improving downstream classifier performance .)</li>
1132+
</ol>
1133+
</div>
1134+
1135+
11151136
<!-- ------------------- end of main content --------------- -->
11161137
<center style="font-size:80%">
11171138
<!-- copyright --> &copy; 1999-2025, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
1 Byte
Binary file not shown.

0 commit comments

Comments
 (0)