|
118 | 118 | ('Summary of steps in PennyLane implementation', |
119 | 119 | 2, |
120 | 120 | None, |
121 | | - 'summary-of-steps-in-pennylane-implementation')]} |
| 121 | + 'summary-of-steps-in-pennylane-implementation'), |
| 122 | + ('References on QBMs', 2, None, 'references-on-qbms')]} |
122 | 123 | end of tocinfo --> |
123 | 124 |
|
124 | 125 | <body> |
|
185 | 186 | <!-- navigation toc: --> <li><a href="#training-of-a-qbm" style="font-size: 80%;">Training of a QBM</a></li> |
186 | 187 | <!-- navigation toc: --> <li><a href="#more-code-examples" style="font-size: 80%;">More code examples</a></li> |
187 | 188 | <!-- navigation toc: --> <li><a href="#summary-of-steps-in-pennylane-implementation" style="font-size: 80%;">Summary of steps in PennyLane implementation</a></li> |
| 189 | + <!-- navigation toc: --> <li><a href="#references-on-qbms" style="font-size: 80%;">References on QBMs</a></li> |
188 | 190 |
|
189 | 191 | </ul> |
190 | 192 | </li> |
@@ -1073,6 +1075,27 @@ <h2 id="summary-of-steps-in-pennylane-implementation" class="anchor">Summary of |
1073 | 1075 | </ol> |
1074 | 1076 | <p>Use an optimizer (e.g. gradient descent, Adam) with PennyLane’s gradient calculations to update parameters.</p> |
1075 | 1077 |
|
| 1078 | +<!-- !split --> |
| 1079 | +<h2 id="references-on-qbms" class="anchor">References on QBMs </h2> |
| 1080 | + |
| 1081 | +<div class="panel panel-default"> |
| 1082 | +<div class="panel-body"> |
| 1083 | +<!-- subsequent paragraphs come in larger fonts, so start with a paragraph --> |
| 1084 | +<ol> |
| 1085 | +<li> Amin et al., 2018. Quantum Boltzmann Machine, Phys. Rev. X 8, 021050. (Introduced the QBM and training bounds .)</li> |
| 1086 | +<li> Wu et al., 2020. Quantum restricted Boltzmann machine is universal for quantum computation, arXiv:2005.11970. (Defined the 2-local QRBM Hamiltonian and demonstrated its universality .)</li> |
| 1087 | +<li> Huijgen et al., 2024. Training Quantum Boltzmann Machines with the beta-VQE, arXiv:2304.08631. (Presented the nested variational training algorithm .)</li> |
| 1088 | +<li> Coopmans & Benedetti, 2024. On the sample complexity of quantum Boltzmann machine learning, Commun. Phys. 7, 274. (Theoretical analysis of relative-entropy training and sample complexity .)</li> |
| 1089 | +<li> Minervini et al., 2025. Evolved Quantum Boltzmann Machines, arXiv:2501.03367. (Proposed the eQBM ansatz mixing imaginary and real time evolution .)</li> |
| 1090 | +<li> Nicosia et al., 2025. Expressive equivalence of classical and quantum RBMs, arXiv:2502.17562. (Introduced semi-quantum RBMs (sqRBMs) with commuting visible terms and non-commuting hidden terms; showed structural relationships with classical RBMs .)</li> |
| 1091 | +<li> Stein et al., 2023. Unsupervised anomaly detection with Quantum Boltzmann Machines, IEEE QWeek (preprint arXiv:2306.04998). (Applied QBMs to fraud/anomaly detection; found QBMs could outperform classical RBMs on synthetic cybersecurity data .)</li> |
| 1092 | +<li> Moro & Prati, 2023. Anomaly detection speed-up by quantum restricted Boltzmann machines, Commun. Phys. 6, 269. (Demonstrated classical vs. quantum training loops on real datasets and observed large sampling speed-ups on a quantum annealer .)</li> |
| 1093 | +<li> Sinno et al., 2025. Implementing Large Quantum Boltzmann Machines for Dataset Balancing, arXiv:2502.03086. (Embedded a 120×120 QRBM on D-Wave Pegasus to generate millions of intrusion-detection samples, improving downstream classifier performance .)</li> |
| 1094 | +</ol> |
| 1095 | +</div> |
| 1096 | +</div> |
| 1097 | + |
| 1098 | + |
1076 | 1099 | <!-- ------------------- end of main content --------------- --> |
1077 | 1100 | </div> <!-- end container --> |
1078 | 1101 | <!-- include javascript, jQuery *first* --> |
|
0 commit comments