Skip to content

Commit 4d8a8e6

Browse files
committed
update
1 parent 9b380cf commit 4d8a8e6

File tree

8 files changed

+312
-1343
lines changed

8 files changed

+312
-1343
lines changed

doc/pub/week10/html/week10-bs.html

Lines changed: 6 additions & 154 deletions
Original file line numberDiff line numberDiff line change
@@ -121,22 +121,6 @@
121121
None,
122122
'more-summary-the-discrete-fourier-transform-dft'),
123123
('Output vector', 2, None, 'output-vector'),
124-
('Simple example', 2, None, 'simple-example'),
125-
('Discrete Fourier Transformations',
126-
2,
127-
None,
128-
'discrete-fourier-transformations'),
129-
('More details on Discrete Fourier transforms',
130-
2,
131-
None,
132-
'more-details-on-discrete-fourier-transforms'),
133-
('Inverse DFT', 2, None, 'inverse-dft'),
134-
('Orthonormality', 2, None, 'orthonormality'),
135-
('Inverse transform', 2, None, 'inverse-transform'),
136-
('Fast Fourier transform and polynomial multiplication',
137-
2,
138-
None,
139-
'fast-fourier-transform-and-polynomial-multiplication'),
140124
('From DFT to QFT', 2, None, 'from-dft-to-qft'),
141125
('In terms of arbitrary states',
142126
2,
@@ -277,13 +261,6 @@
277261
<!-- navigation toc: --> <li><a href="#fast-fourier-transform-fft" style="font-size: 80%;"><b>Fast Fourier transform (FFT)</b></a></li>
278262
<!-- navigation toc: --> <li><a href="#more-summary-the-discrete-fourier-transform-dft" style="font-size: 80%;"><b>More summary: The discrete Fourier transform (DFT)</b></a></li>
279263
<!-- navigation toc: --> <li><a href="#output-vector" style="font-size: 80%;"><b>Output vector</b></a></li>
280-
<!-- navigation toc: --> <li><a href="#simple-example" style="font-size: 80%;"><b>Simple example</b></a></li>
281-
<!-- navigation toc: --> <li><a href="#discrete-fourier-transformations" style="font-size: 80%;"><b>Discrete Fourier Transformations</b></a></li>
282-
<!-- navigation toc: --> <li><a href="#more-details-on-discrete-fourier-transforms" style="font-size: 80%;"><b>More details on Discrete Fourier transforms</b></a></li>
283-
<!-- navigation toc: --> <li><a href="#inverse-dft" style="font-size: 80%;"><b>Inverse DFT</b></a></li>
284-
<!-- navigation toc: --> <li><a href="#orthonormality" style="font-size: 80%;"><b>Orthonormality</b></a></li>
285-
<!-- navigation toc: --> <li><a href="#inverse-transform" style="font-size: 80%;"><b>Inverse transform</b></a></li>
286-
<!-- navigation toc: --> <li><a href="#fast-fourier-transform-and-polynomial-multiplication" style="font-size: 80%;"><b>Fast Fourier transform and polynomial multiplication</b></a></li>
287264
<!-- navigation toc: --> <li><a href="#from-dft-to-qft" style="font-size: 80%;"><b>From DFT to QFT</b></a></li>
288265
<!-- navigation toc: --> <li><a href="#in-terms-of-arbitrary-states" style="font-size: 80%;"><b>In terms of arbitrary states</b></a></li>
289266
<!-- navigation toc: --> <li><a href="#unitarity" style="font-size: 80%;"><b>Unitarity</b></a></li>
@@ -375,7 +352,6 @@ <h2 id="plans-for-the-week-of-march-24-28-2025" class="anchor">Plans for the wee
375352
<div class="panel-body">
376353
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
377354
<ol>
378-
<li> TBA</li>
379355
<li> Start discussion of discrete Fourier transforms and Quantum Fourier transforms, basic mathematical expressions</li>
380356
<li> Reading recommendation Hundt, Quantum Computing for Programmers, sections 6.1-6.4 on QFT.
381357
<!-- o <a href="https://youtu.be/" target="_self">Video of lecture TBA</a> -->
@@ -388,7 +364,7 @@ <h2 id="plans-for-the-week-of-march-24-28-2025" class="anchor">Plans for the wee
388364
<!-- !split -->
389365
<h2 id="possible-paths-for-project-2" class="anchor">Possible paths for project 2 </h2>
390366

391-
<ul>
367+
<ol>
392368
<li> Implement QFTs and study the quantum phase estimation (QPE) algorithm and
393369
<ol type="a"></li>
394370
<li> Compare QFTs with Fast Fourier transforms</li>
@@ -403,7 +379,7 @@ <h2 id="possible-paths-for-project-2" class="anchor">Possible paths for project
403379
<li> Study the solution of quantum mechanical eigenvalue problems with systems from atomic/molecular physics and quantum chemistry using adaptive QPE</li>
404380
<li> Quantum machine learning projects like quantum Boltzmann machine or quantum neural networks</li>
405381
<li> Other ideas</li>
406-
</ul>
382+
</ol>
407383
<p>For project 2, in order to be time efficient, you can use software like Qiskit, Pennylane, qBraid and/or other</p>
408384

409385
<!-- !split -->
@@ -413,9 +389,7 @@ <h2 id="overarching-motivation" class="anchor">Overarching motivation </h2>
413389
motivations for the DFT. For those of you familiar with signal
414390
processing, harmonic oscillations, and many other areas of
415391
applications, Fourier transforms are almost standard kitchen
416-
items. For those of you who have studied quantum theory, you have
417-
probably met Fourier transforms when studying Heisenberg's uncertainty
418-
relation between momentum and position.
392+
items.
419393
</p>
420394

421395
<!-- !split -->
@@ -518,7 +492,7 @@ <h2 id="simple-code-example" class="anchor">Simple Code Example </h2>
518492
<!-- !split -->
519493
<h2 id="continuous-fourier-transforms-and-the-principle-of-superposition" class="anchor">Continuous Fourier transforms and the principle of Superposition </h2>
520494

521-
<p>It was Fourier's idea to expand a continuous and periodic function \( f(t) \) in terms of sums sinus and cosinus ordered functions (we will use exponentials however)
495+
<p>It was Fourier's idea to expand a continuous and periodic function \( f(t) \) in terms of sums sine and cosine ordered functions (we will use exponentials however)
522496
as
523497
</p>
524498
$$
@@ -562,7 +536,7 @@ <h2 id="exponential-expression" class="anchor">Exponential expression </h2>
562536
The constant \( c_{0}=c_0^* \) is a real number.
563537
</p>
564538

565-
<p>The above sum can also be rewritten in terms of the real part of the exponetials as</p>
539+
<p>The above sum can also be rewritten in terms of the real part of the exponentials as</p>
566540
$$
567541
f(t) =2\mathrm{Re}\left(\sum_{k=0}^{n}c_{k}\exp{(2\pi\imath kt} \right),
568542
$$
@@ -1085,128 +1059,6 @@ <h2 id="output-vector" class="anchor">Output vector </h2>
10851059
$$
10861060

10871061

1088-
<!-- !split -->
1089-
<h2 id="simple-example" class="anchor">Simple example </h2>
1090-
1091-
<p>As an example we can have a set of complex numbers
1092-
\( \{x_0,\dots,x_{n-1}\} \) with fixed length \( n \), we can Fourier
1093-
transform this as
1094-
</p>
1095-
$$
1096-
y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \exp{i(2\pi jk)/n},
1097-
$$
1098-
1099-
<p>leading to a new set of complex numbers \( \{ y_0,\dots,y_{n-1}\} \). </p>
1100-
1101-
<!-- !split -->
1102-
<h2 id="discrete-fourier-transformations" class="anchor">Discrete Fourier Transformations </h2>
1103-
1104-
<p>Consider two sets of complex numbers \( x_k \) and \( y_k \) with
1105-
\( k=0,1,\dots,n-1 \) entries. The discrete Fourier transform is defined
1106-
as
1107-
</p>
1108-
$$
1109-
y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \exp{(\frac{2\pi\imath jk}{n})} x_j.
1110-
$$
1111-
1112-
<p>As an example, assume \( x_0=1 \) and \( x_1=1 \). We can then use the above expression to find \( y_0 \) and \( y_1 \).</p>
1113-
1114-
<p>With the above formula we get then</p>
1115-
$$
1116-
\begin{align*}
1117-
y_0 &= \frac{1}{\sqrt{2}} \left( \exp{(\frac{2\pi\imath 0\times 1}{2})} \times 1+\exp{(\frac{2\pi\imath 0\times 1}{2})}\times 2\right)\\
1118-
& =\frac{1}{\sqrt{2}}(1+2)=\frac{3}{\sqrt{2}},
1119-
\end{align*}
1120-
$$
1121-
1122-
<p>and</p>
1123-
$$
1124-
\begin{align*}
1125-
y_1 &= \frac{1}{\sqrt{2}} \left( \exp{(\frac{2\pi\imath 0\times 1}{2})} \times 1+\exp{(\frac{2\pi\imath 1\times 1}{2})}\times 2\right)=\\
1126-
& =\frac{1}{\sqrt{2}}(1+2\exp{(\pi\imath)})=-\frac{1}{\sqrt{2}}.
1127-
\end{align*}
1128-
$$
1129-
1130-
1131-
<!-- !split -->
1132-
<h2 id="more-details-on-discrete-fourier-transforms" class="anchor">More details on Discrete Fourier transforms </h2>
1133-
1134-
<p>Suppose that we have a vector \( f \) of \( n \) complex numbers, \( f_{k}, k
1135-
\in\{0,1, \ldots, n-1\} \). Then the discrete Fourier transform (DFT) is
1136-
a map from these \( n \) complex numbers to \( n \) complex numbers, the
1137-
Fourier transformed coefficients \( \tilde{f}_{j} \), given by
1138-
</p>
1139-
1140-
$$
1141-
\begin{equation*}
1142-
\tilde{f}_{j}=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \omega^{-j k} f_{k}
1143-
\end{equation*}
1144-
$$
1145-
1146-
<p>where \( \omega=\exp \left(\frac{2 \pi i}{N}\right) \).</p>
1147-
1148-
<!-- !split -->
1149-
<h2 id="inverse-dft" class="anchor">Inverse DFT </h2>
1150-
1151-
<p>The inverse DFT is given by</p>
1152-
1153-
$$
1154-
\begin{equation*}
1155-
f_{j}=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \omega^{j k} \tilde{f}_{k}
1156-
\end{equation*}
1157-
$$
1158-
1159-
<p>To see this consider how the basis vectors transform. If \( f_{k}^{l}=\delta_{k, l} \), then</p>
1160-
1161-
$$
1162-
\begin{equation*}
1163-
\tilde{f}_{j}^{l}=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \omega^{-j k} \delta_{k, l}=\frac{1}{\sqrt{n}} \omega^{-j l}
1164-
\end{equation*}
1165-
$$
1166-
1167-
1168-
<!-- !split -->
1169-
<h2 id="orthonormality" class="anchor">Orthonormality </h2>
1170-
1171-
<p>These DFT vectors are orthonormal, that is</p>
1172-
$$
1173-
\begin{equation*}
1174-
\sum_{j=0}^{n-1} \tilde{f}^{l}{ }_{j}^{*} \tilde{f}_{j}^{m}=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{j l} \omega^{-j m}=\frac{1}{N} \sum_{j=0}^{n-1} \omega^{j(l-m)}
1175-
\end{equation*}
1176-
$$
1177-
1178-
<p>This last sum can be evaluated as a geometric series, but beware of the \( (l-m)=0 \) term, and yields</p>
1179-
1180-
$$
1181-
\begin{equation*}
1182-
\sum_{j=0}^{n-1} \tilde{f}^{l}{ }_{j}^{*} \tilde{f}_{j}^{m}=\delta_{l, m}
1183-
\end{equation*}
1184-
$$
1185-
1186-
1187-
<!-- !split -->
1188-
<h2 id="inverse-transform" class="anchor">Inverse transform </h2>
1189-
1190-
<p>From this we can check that the inverse DFT does indeed perform the inverse transform:</p>
1191-
1192-
$$
1193-
\begin{equation*}
1194-
f_{j}=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \omega^{j k} \tilde{f}_{k}=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \omega^{j k} \frac{1}{\sqrt{n}} \sum_{l=0}^{n-1} \omega^{-l k} f_{l}=\frac{1}{n} \sum_{k, l=0}^{n-1} \omega^{(j-l) k} f_{l}=\sum_{l=0}^{n-1} \delta_{j, l} f_{l}=f_{j}
1195-
\end{equation*}
1196-
$$
1197-
1198-
1199-
<!-- !split -->
1200-
<h2 id="fast-fourier-transform-and-polynomial-multiplication" class="anchor">Fast Fourier transform and polynomial multiplication </h2>
1201-
1202-
<p>The FFT algorithm is an \( O(n\log{n}) \) divide and conquer algorithm for DFT, used by
1203-
Gauss circa 1805, and popularized by Cooley and Turkey and 1965. Gauss used the
1204-
algorithm to determine periodic asteroid orbits, while Cooley and Turkey used it to
1205-
detect Soviet nuclear tests from o&#64256;shore readings.
1206-
A practical implementation of FFT is FFTW, which was described by Frigo and
1207-
Johnson at MIT. The algorithm is often implemented directly in hardware, for fixed \( n \).
1208-
</p>
1209-
12101062
<!-- !split -->
12111063
<h2 id="from-dft-to-qft" class="anchor">From DFT to QFT </h2>
12121064

@@ -1284,7 +1136,7 @@ <h2 id="short-hand-notation" class="anchor">Short hand notation </h2>
12841136
<!-- !split -->
12851137
<h2 id="two-qubit-system" class="anchor">Two-qubit system </h2>
12861138

1287-
<p>First a two qubit system. See whiteboard notes.</p>
1139+
<p>First a two qubit system. Notes to be added.</p>
12881140

12891141
<!-- !split -->
12901142
<h2 id="four-qubit-system" class="anchor">Four qubit system </h2>

0 commit comments

Comments
 (0)