Skip to content

Commit 44461fd

Browse files
committed
added jw stuff, to be elaborated
1 parent bc8b31d commit 44461fd

File tree

2 files changed

+185
-0
lines changed

2 files changed

+185
-0
lines changed
235 KB
Binary file not shown.

doc/Programs/VQEcodes/jw.tex

Lines changed: 185 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,185 @@
1+
\documentclass{beamer}
2+
\usetheme{Madrid}
3+
\usepackage{amsmath,amssymb,braket}
4+
\usepackage{tikz}
5+
\usepackage{quantikz}
6+
\title{The Jordan–Wigner Transformation}
7+
\author{Lecture Notes}
8+
\date{}
9+
10+
\begin{document}
11+
12+
\begin{frame}
13+
\titlepage
14+
\end{frame}
15+
16+
\begin{frame}{Outline}
17+
\tableofcontents
18+
\end{frame}
19+
20+
\section{Fermionic Operators and Second Quantization}
21+
\begin{frame}{Fermionic Operators and Second Quantization}
22+
\begin{itemize}
23+
\item \textbf{Fermionic modes:} Defined by creation ($a_p^\dagger$) and annihilation ($a_p$) operators for each mode $p=0,\dots,N-1$. These operators obey the {\it canonical anticommutation relations}:
24+
\[
25+
\{a_p, a_q\} = 0,
26+
\quad
27+
\{a_p, a_q^\dagger\} = \delta_{pq},
28+
\]
29+
where $\{A,B\}=AB+BA$. (Vacuum: $a_p|\text{vac}\rangle=0$) [oai_citation:0‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=A%20system%20of%20,relations%20have%20the%20following%20consequences).
30+
\item \textbf{Fock space basis:} The number (occupation) basis is
31+
$$
32+
|n_0,\dots,n_{N-1}\rangle = (a_0^\dagger)^{n_0}(a_1^\dagger)^{n_1}\cdots|\text{vac}\rangle,\quad n_p\in\{0,1\}.
33+
$$
34+
Each $a_p^\dagger$ toggles the occupancy of mode $p$ [oai_citation:1‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=,vectors).
35+
\item \textbf{Pauli exclusion:} Fermionic operators satisfy $a_p^2=0$; one cannot create two fermions in the same mode [oai_citation:2‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=,in%20the%20same%20mode%20twice). Equivalently, $a_p^\dagger a_p$ has eigenvalues 0 or 1 (occupation number).
36+
\end{itemize}
37+
\end{frame}
38+
39+
\section{Anticommutation Relations}
40+
\begin{frame}{Anticommutation and Consequences}
41+
\begin{itemize}
42+
\item \textbf{Canonical Anticommutation:} $\{a_p,a_q\}=0$ and $\{a_p,a_q^\dagger\}=\delta_{pq}$ by definition [oai_citation:3‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=A%20system%20of%20,relations%20have%20the%20following%20consequences).
43+
\item \textbf{Occupation operators commute:} $[n_p,n_q]=0$ with $n_p=a_p^\dagger a_p$, and each $n_p$ has eigenvalues 0 or 1 [oai_citation:4‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=the%20anticommutation%20relations%20have%20the,following%20consequences).
44+
\item \textbf{Vacuum state:} There is a unique vacuum $|\text{vac}\rangle$ annihilated by all $a_p$; each $a_p^\dagger$ creates a fermion in mode $p$ (raising its occupation to 1) [oai_citation:5‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=,eigenvector%20of%20all%20the%C2%A0%5C%28a%5E%5Cdagger_p%20a_p).
45+
\item \textbf{Anticommutation implications:} $a_p^2=0$ (Pauli exclusion) and $(a_p^\dagger)^2=0$. On a basis state,
46+
$a_p|n_0\ldots 1_p \ldots n_{N-1}\rangle = (-1)^{\sum_{q<p}n_q}|n_0\ldots 0_p\ldots n_{N-1}\rangle$ [oai_citation:6‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=%5C%5B%5Cbegin,1%7D%20%5Crangle%20%26%3D%200%20%5C%2C.%5Cend%7Baligned) (sign from earlier occupations), and annihilation on an empty mode gives 0.
47+
\end{itemize}
48+
\end{frame}
49+
50+
\section{Motivation for Mapping Fermions to Qubits}
51+
\begin{frame}{Why Map Fermions to Qubits?}
52+
\begin{itemize}
53+
\item \textbf{Quantum simulation:} We wish to simulate fermionic systems (e.g.\ electrons in molecules or lattice models) on a quantum computer of qubits. To do so, we need an explicit map of fermionic operators to qubit operators that preserves anticommutation [oai_citation:7‡futureofmatter.com](https://futureofmatter.com/assets/fermions_and_jordan_wigner.pdf#:~:text=system%20of%20Fermions,his%20famous%201982%20paper%20on).
54+
\item \textbf{Spin-fermion equivalence:} The Jordan–Wigner transform shows spin-$\frac12$ chains (qubits) can be mapped to fermions. Conversely, fermionic Hamiltonians can be expressed as qubit (spin) Hamiltonians. For example, 1D spin chains like the Ising/XY models are exactly solvable by mapping to free fermions [oai_citation:8‡en.wikipedia.org](https://en.wikipedia.org/wiki/Jordan%E2%80%93Wigner_transformation#:~:text=The%20Jordan%E2%80%93Wigner%20transformation%20is%20a,operators%20and%20then%20diagonalizing%20in).
55+
\item \textbf{Electronic structure:} Molecular electronic Hamiltonians (second-quantized fermionic operators) can be encoded into qubit Hamiltonians for quantum chemistry simulations. Each fermionic mode (spin-orbital) corresponds to one qubit under Jordan–Wigner [oai_citation:9‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=The%20Jordan,the%20occupation%20of%20one%20qubit).
56+
\item \textbf{Benchmark models:} Models like the Fermi–Hubbard (strongly correlated electrons on lattice) are prime targets for quantum simulators [oai_citation:10‡nature.com](https://www.nature.com/articles/s41467-022-33335-4?error=cookies_not_supported&code=099d8369-c950-46da-9d82-052da949e39d#:~:text=solution%20of%20physical%20problems%20that,excellent%20benchmark%20for%20quantum%20algorithms). Mapping to qubits allows use of quantum algorithms (VQE, QPE) to study these systems.
57+
\end{itemize}
58+
\end{frame}
59+
60+
\section{Jordan–Wigner Transformation: Formalism}
61+
\begin{frame}{Jordan–Wigner: Operator Mapping}
62+
The Jordan–Wigner (JW) transform explicitly maps each fermionic mode to a qubit. The annihilation operator $a_p$ is mapped to a product of Pauli matrices on qubits:
63+
\[
64+
a_p \;\mapsto\; \frac{1}{2}\,(X_p + iY_p)\,Z_0 Z_1\cdots Z_{p-1},
65+
\]
66+
and the creation operator $a_p^\dagger$ to its Hermitian conjugate:
67+
\[
68+
a_p^\dagger \;\mapsto\; \frac{1}{2}\,(X_p - iY_p)\,Z_0 Z_1\cdots Z_{p-1}.
69+
\]
70+
That is, each fermionic mode $p$ is represented by qubit $p$, with a string of $Z$ operators on all lower-index qubits [oai_citation:11‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=%5C%5B%5Cbegin,aligned).
71+
\begin{itemize}
72+
\item This mapping ensures the correct anticommutation: the $Z$-string introduces a sign $(-1)^{\sum_{q<p}n_q}$ when swapping fermions, reproducing Fermi statistics.
73+
\item In terms of Pauli operators:
74+
\[
75+
a_p = (X_p + iY_p)/2 \prod_{k=0}^{p-1} Z_k, \quad
76+
a_p^\dagger = (X_p - iY_p)/2 \prod_{k=0}^{p-1} Z_k\,.
77+
\] [oai_citation:12‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=%5C%5B%5Cbegin,aligned)
78+
\end{itemize}
79+
\end{frame}
80+
81+
\begin{frame}{JW: Operator Identities}
82+
Using the mapping, one can express standard fermionic operators in Pauli form:
83+
\begin{itemize}
84+
\item \textbf{Number operator:}
85+
$$n_p = a_p^\dagger a_p = \frac{I - Z_p}{2},$$
86+
since $a_p^\dagger a_p$ has eigenvalue 1 if qubit $p$ is $|1\rangle$ and 0 if $|0\rangle$.
87+
\item \textbf{Fermionic parity:}
88+
$$(-1)^{\sum_{q<p}n_q} = \prod_{k=0}^{p-1} Z_k,$$
89+
implemented by the string of $Z$'s in the mapping.
90+
\item \textbf{Spin operators:} The Pauli-$Z$ on qubit $j$ corresponds to $2a_j^\dagger a_j - I$ (local fermion number parity) [oai_citation:13‡futureofmatter.com](https://futureofmatter.com/assets/fermions_and_jordan_wigner.pdf#:~:text=operators%20in%20terms%20of%20the,for%20Xj%20by%20noting%20that). For nearest-neighbor products:
91+
\[
92+
X_j X_{j+1} + Y_j Y_{j+1}
93+
\;=\; a_j^\dagger a_{j+1} + a_{j+1}^\dagger a_j,
94+
\]
95+
showing how hopping terms map to two-qubit terms.
96+
\item \textbf{Inverse transform:} The Pauli operators can be expressed in terms of $a,a^\dagger$. For example,
97+
\[
98+
Z_j = a_j a_j^\dagger - a_j^\dagger a_j,
99+
\]
100+
\[
101+
X_j = - (Z_0 Z_1 \cdots Z_{j-1})(a_j + a_j^\dagger),
102+
\]
103+
\[
104+
Y_j = i(Z_0 Z_1 \cdots Z_{j-1})(a_j^\dagger - a_j),
105+
\]
106+
which one can verify yields the usual Pauli matrices [oai_citation:14‡futureofmatter.com](https://futureofmatter.com/assets/fermions_and_jordan_wigner.pdf#:~:text=operators%20in%20terms%20of%20the,for%20Xj%20by%20noting%20that).
107+
\end{itemize}
108+
\end{frame}
109+
110+
\section{Example: 2-Mode Fermionic Hamiltonian}
111+
\begin{frame}{Example: 2-Mode Hamiltonian}
112+
Consider a two-mode fermionic Hamiltonian (e.g.\ tight-binding or Hubbard dimer):
113+
\[
114+
H = \varepsilon\,(a_0^\dagger a_0 + a_1^\dagger a_1) + t\,(a_0^\dagger a_1 + a_1^\dagger a_0).
115+
\]
116+
Under Jordan–Wigner:
117+
\[
118+
a_0^\dagger a_0 = \frac{I - Z_0}{2},
119+
\quad
120+
a_1^\dagger a_1 = \frac{I - Z_1}{2},
121+
\]
122+
\[
123+
a_0^\dagger a_1 + a_1^\dagger a_0
124+
= \frac{1}{2}(X_0X_1 + Y_0Y_1).
125+
\]
126+
Thus the qubit Hamiltonian becomes
127+
\[
128+
H_{q} = \frac{\varepsilon}{2}(2I - Z_0 - Z_1) \;+\; \frac{t}{2}(X_0X_1 + Y_0Y_1).
129+
\]
130+
All terms are now products of Pauli operators acting on qubits 0 and 1. (This illustrates the mapping of on-site energies to $Z$ and hopping to $XX+YY$ interactions.)
131+
\end{frame}
132+
133+
\section{Circuit Representations}
134+
\begin{frame}{Circuit Representation of JW Operators}
135+
Fermionic operators mapped to Pauli operators can be implemented by quantum circuits:
136+
\begin{itemize}
137+
\item \textbf{Single-mode phases:} A term like $Z_p$ (from number operators) is a simple single-qubit phase-flip gate.
138+
\item \textbf{Hopping terms (XX+YY):} For example, the two-qubit interaction
139+
$e^{-i\frac{\theta}{2}(X_0X_1 + Y_0Y_1)}$ can be realized by standard gate decompositions. One method:
140+
apply Hadamard gates to bring $X\!X$ coupling into a $Z\!Z$ form on a basis, perform a controlled-$Z$ rotation, and undo the basis change.
141+
\item \textbf{RYY / RXX gates:} Modern frameworks include gates like $R_{XX}(\theta)=e^{-i\theta X\otimes X}$ and $R_{YY}(\theta)=e^{-i\theta Y\otimes Y}$ [oai_citation:15‡docs.quantum.ibm.com](https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.RYYGate#:~:text=A%20parametric%202,rotation%20about%20YY). For instance, IBM Qiskit has an RYY gate implementing $e^{-i\theta\,Y\otimes Y}$ [oai_citation:16‡docs.quantum.ibm.com](https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.RYYGate#:~:text=A%20parametric%202,rotation%20about%20YY).
142+
\item \textbf{Circuit example:} To implement $e^{-i(\phi/2)X_0X_1}$, use two Hadamards and a controlled-$Z$ rotation:
143+
\[
144+
\Qcircuit @C=1em @R=0.7em {
145+
\lstick{\ket{q_0}} & \gate{H} & \ctrl{1} & \gate{H} & \qw \\
146+
\lstick{\ket{q_1}} & \qw & \targ & \gate{R_z(2\phi)} & \qw
147+
}
148+
\]
149+
(Similar constructions exist for $X\otimes X + Y\otimes Y$ by combining rotations.)
150+
\end{itemize}
151+
\end{frame}
152+
153+
\section{Applications in Quantum Simulation}
154+
\begin{frame}{Applications: Quantum Simulations}
155+
\begin{itemize}
156+
\item \textbf{Quantum Chemistry:} Electronic structure Hamiltonians (in second quantization) map directly to qubit Hamiltonians via JW. Each molecular orbital/spin-orbital is a fermionic mode→ qubit [oai_citation:17‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=The%20Jordan,the%20occupation%20of%20one%20qubit). For example, Qiskit Nature uses JW for initial mappings of small molecules.
157+
\item \textbf{Spin Chains and Lattice Fermions:} The JW transform is classic for solving 1D spin chains (Ising, XY) by mapping to free fermions [oai_citation:18‡en.wikipedia.org](https://en.wikipedia.org/wiki/Jordan%E2%80%93Wigner_transformation#:~:text=The%20Jordan%E2%80%93Wigner%20transformation%20is%20a,operators%20and%20then%20diagonalizing%20in). Conversely, simulating lattice fermion models (e.g.\ Fermi–Hubbard) on a qubit array uses JW to encode creation/annihilation operators. The 1D Fermi–Hubbard model is a common benchmark for quantum computers [oai_citation:19‡nature.com](https://www.nature.com/articles/s41467-022-33335-4?error=cookies_not_supported&code=099d8369-c950-46da-9d82-052da949e39d#:~:text=solution%20of%20physical%20problems%20that,excellent%20benchmark%20for%20quantum%20algorithms).
158+
\item \textbf{Tapering via Symmetry:} In some cases, e.g.\ systems with fixed particle number or spin parity, the JW-mapped Hamiltonian has symmetries (global $Z$-parities) that allow qubit reduction (tapering) [oai_citation:20‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=The%20Parity%20mapping%20is%20the,is%20delocalized%20over%20all%20qubits).
159+
\end{itemize}
160+
\end{frame}
161+
162+
\section{Other Fermion-to-Qubit Mappings}
163+
\begin{frame}{Alternative Mappings (Parity, Bravyi–Kitaev)}
164+
\begin{itemize}
165+
\item \textbf{Parity mapping:} A variant of JW where parity information is stored locally on qubits. In parity mapping, occupation information is delocalized, and the qubit index encodes parity of lower modes [oai_citation:21‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=The%20Parity%20mapping%20is%20the,is%20delocalized%20over%20all%20qubits). This mapping often enables qubit tapering by conserving total particle number.
166+
\item \textbf{Bravyi–Kitaev (BK):} A mapping that balances locality between JW and parity. BK uses a binary-tree structure to achieve $O(\log N)$ Pauli-weight for parity and update operations [oai_citation:22‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=already%20supports%20the%20following%20fermionic,mappings). It generally reduces the number of gates for some operators at the cost of more complex index management.
167+
\item \textbf{Comparison:}
168+
JW is simplest (long $Z$-strings, $O(N)$ weight), parity and BK trade off Pauli string lengths differently. The best choice depends on hardware connectivity and symmetry exploitation [oai_citation:23‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=already%20supports%20the%20following%20fermionic,mappings) [oai_citation:24‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=The%20Parity%20mapping%20is%20the,is%20delocalized%20over%20all%20qubits).
169+
\end{itemize}
170+
\end{frame}
171+
172+
\section{References}
173+
\begin{frame}[allowframebreaks]{References}
174+
\footnotesize
175+
\begin{thebibliography}{10}
176+
\bibitem M.\ Nielsen, “The Fermionic CCRs and the Jordan–Wigner Transform,” {\it arXiv:}quant-ph/0205030 (2005) [oai_citation:25‡futureofmatter.com](https://futureofmatter.com/assets/fermions_and_jordan_wigner.pdf#:~:text=system%20of%20Fermions,his%20famous%201982%20paper%20on) [oai_citation:26‡futureofmatter.com](https://futureofmatter.com/assets/fermions_and_jordan_wigner.pdf#:~:text=operators%20in%20terms%20of%20the,for%20Xj%20by%20noting%20that).
177+
\bibitem I.\ S.\ Wang {\it et al.}, {\it OpenFermion tutorials} (Google Quantum AI), *Jordan–Wigner and Bravyi–Kitaev Transforms* [oai_citation:27‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=A%20system%20of%20,relations%20have%20the%20following%20consequences) [oai_citation:28‡quantumai.google](https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms#:~:text=Under%20the%20Jordan,to%20qubit%20operators%20as%20follows).
178+
\bibitem A.\ Moll {\it et al.}, “Fermionic mappings in electronic structure,” Qiskit Nature Tutorial (2022) [oai_citation:29‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=The%20Jordan,the%20occupation%20of%20one%20qubit) [oai_citation:30‡qiskit-community.github.io](https://qiskit-community.github.io/qiskit-nature/tutorials/06_qubit_mappers.html#:~:text=The%20Parity%20mapping%20is%20the,is%20delocalized%20over%20all%20qubits).
179+
\bibitem Wikipedia, *Jordan–Wigner transformation*, (provides background and context) [oai_citation:31‡en.wikipedia.org](https://en.wikipedia.org/wiki/Jordan%E2%80%93Wigner_transformation#:~:text=The%20Jordan%E2%80%93Wigner%20transformation%20is%20a,operators%20and%20then%20diagonalizing%20in).
180+
\bibitem Qiskit Documentation, *RYYGate*, describes $e^{-i\theta Y\otimes Y}$ implementations [oai_citation:32‡docs.quantum.ibm.com](https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.RYYGate#:~:text=A%20parametric%202,rotation%20about%20YY).
181+
\bibitem S.\ Stanisic {\it et al.}, “Observing Fermi–Hubbard ground state properties,” *Nat.\ Commun.* 13, 5743 (2022) [oai_citation:33‡nature.com](https://www.nature.com/articles/s41467-022-33335-4?error=cookies_not_supported&code=099d8369-c950-46da-9d82-052da949e39d#:~:text=solution%20of%20physical%20problems%20that,excellent%20benchmark%20for%20quantum%20algorithms).
182+
\end{thebibliography}
183+
\end{frame}
184+
185+
\end{document}

0 commit comments

Comments
 (0)