Skip to content

Commit 429fe8f

Browse files
committed
added qml material
1 parent 1d39815 commit 429fe8f

File tree

2 files changed

+170
-0
lines changed

2 files changed

+170
-0
lines changed

doc/src/FuturePlans/qml.pdf

151 KB
Binary file not shown.

doc/src/FuturePlans/qml.tex

Lines changed: 170 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,170 @@
1+
\documentclass{beamer}
2+
\usetheme{Madrid}
3+
\usecolortheme{seahorse}
4+
\usepackage{amsmath, amsfonts}
5+
\usepackage{graphicx}
6+
\usepackage{tikz}
7+
\usepackage{qcircuit}
8+
\usepackage{caption}
9+
10+
\title[QML with NN]{Quantum Machine Learning with Neural Networks}
11+
\author{M Hjorth-Jensen}
12+
\institute{University of Oslo}
13+
\date{\today}
14+
15+
\begin{document}
16+
17+
% Title Slide
18+
\begin{frame}
19+
\titlepage
20+
\end{frame}
21+
22+
% Outline
23+
\begin{frame}{Outline}
24+
\tableofcontents
25+
\end{frame}
26+
27+
% Section 1
28+
\section{Overview of QML}
29+
\begin{frame}{Quantum Machine Learning Landscape}
30+
\begin{itemize}
31+
\item Quantum Data and Classical Data: \( |\psi\rangle \) vs vectors \( \mathbf{x} \in \mathbb{R}^n \)
32+
\item Categories:
33+
\begin{itemize}
34+
\item Quantum-enhanced classical ML
35+
\item Quantum-native ML algorithms
36+
\item Hybrid quantum-classical ML
37+
\end{itemize}
38+
\item Resource-aware quantum learning models
39+
\end{itemize}
40+
\end{frame}
41+
42+
% Section 2
43+
\section{Quantum Computing Recap}
44+
\begin{frame}{Quantum States and Gates}
45+
\begin{itemize}
46+
\item Qubit: \( |\psi\rangle = \alpha|0\rangle + \beta|1\rangle \), \( |\alpha|^2 + |\beta|^2 = 1 \)
47+
\item Common Gates:
48+
\[
49+
H = \frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\ 1 & -1\end{bmatrix}, \quad
50+
X = \begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}
51+
\]
52+
\item Entanglement via CNOT and multi-qubit systems
53+
\end{itemize}
54+
\end{frame}
55+
56+
\begin{frame}{Quantum Circuit Example}
57+
\[
58+
\Qcircuit @C=1em @R=.7em {
59+
\lstick{|0\rangle} & \gate{H} & \ctrl{1} & \qw \\
60+
\lstick{|0\rangle} & \qw & \targ & \qw
61+
}
62+
\]
63+
\begin{itemize}
64+
\item This circuit creates a Bell state: \( \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \)
65+
\item Essential for encoding correlations
66+
\end{itemize}
67+
\end{frame}
68+
69+
% Section 3
70+
\section{Neural Networks and Representational Capacity}
71+
\begin{frame}{Classical Neural Networks Review}
72+
\begin{itemize}
73+
\item Universal approximation theorem
74+
\item Layer-wise structure: \( y = \sigma(Wx + b) \)
75+
\item Deep networks and expressivity
76+
\item Limitations in high-dimensional feature space
77+
\end{itemize}
78+
\end{frame}
79+
80+
% Section 4
81+
\section{Quantum Neural Networks (QNN)}
82+
\begin{frame}{What is a QNN?}
83+
\begin{itemize}
84+
\item Quantum analog of classical NNs using parameterized quantum circuits (PQC)
85+
\item Data encoding layer + entangling layer + variational layer
86+
\item Output is measurement of observables
87+
\item Trainable parameters: gate angles \( \theta \)
88+
\end{itemize}
89+
\end{frame}
90+
91+
\begin{frame}{Generic QNN Architecture}
92+
\begin{center}
93+
\includegraphics[width=0.85\linewidth]{qnn_diagram.png} % Replace with your QNN diagram
94+
\end{center}
95+
\captionof{figure}{Example architecture of a QNN: Feature map + variational layers + measurement}
96+
\end{frame}
97+
98+
% Section 5
99+
\section{Variational Quantum Circuits (VQCs)}
100+
\begin{frame}{Variational Quantum Circuits}
101+
\begin{itemize}
102+
\item PQCs parameterized by \( \theta \)
103+
\item Optimization via classical optimizer (e.g., COBYLA, SPSA, Adam)
104+
\item Objective: minimize loss \( L(\theta) \) based on expectation values
105+
\item Cost function: \( C(\theta) = \langle \psi(\theta)| \hat{H} |\psi(\theta)\rangle \)
106+
\end{itemize}
107+
\end{frame}
108+
109+
\begin{frame}{Circuit Example: Ansatz Layer}
110+
\[
111+
\Qcircuit @C=1em @R=.7em {
112+
\lstick{|x_1\rangle} & \gate{R_Y(x_1)} & \multigate{1}{Entangle} & \gate{R_Y(\theta_1)} & \qw \\
113+
\lstick{|x_2\rangle} & \gate{R_Y(x_2)} & \ghost{Entangle} & \gate{R_Y(\theta_2)} & \qw
114+
}
115+
\]
116+
\begin{itemize}
117+
\item Hybrid encoding: data \( x_i \) and learnable parameters \( \theta_i \)
118+
\item Can be scaled for deeper architectures
119+
\end{itemize}
120+
\end{frame}
121+
122+
% Section 6
123+
\section{Training QNNs}
124+
\begin{frame}{Training and Optimization}
125+
\begin{itemize}
126+
\item Gradient-based: Parameter Shift Rule
127+
\[
128+
\frac{\partial \langle O \rangle}{\partial \theta} =
129+
\frac{\langle O \rangle_{\theta + \pi/2} - \langle O \rangle_{\theta - \pi/2}}{2}
130+
\]
131+
\item Cost landscapes can suffer from barren plateaus
132+
\item Mitigation via tailored ansatz or local cost functions
133+
\end{itemize}
134+
\end{frame}
135+
136+
% Section 7
137+
\section{Applications}
138+
\begin{frame}{Applications of QML + NN}
139+
\begin{itemize}
140+
\item Quantum-enhanced image and speech classification
141+
\item Anomaly detection in quantum systems
142+
\item Quantum generative adversarial networks (QGANs)
143+
\item Quantum autoencoders for data compression
144+
\end{itemize}
145+
\end{frame}
146+
147+
% Section 8
148+
\section{Open Challenges}
149+
\begin{frame}{Challenges in QNNs}
150+
\begin{itemize}
151+
\item Hardware constraints: decoherence, limited qubits
152+
\item Barren plateau problem in deep PQCs
153+
\item Lack of general-purpose quantum optimizers
154+
\item Scaling to larger problem instances
155+
\end{itemize}
156+
\end{frame}
157+
158+
% Section 9
159+
\section{Conclusion and Future Work}
160+
\begin{frame}{Future Directions}
161+
\begin{itemize}
162+
\item Efficient hybrid architectures
163+
\item Adaptive circuit learning
164+
\item Near-term QML benchmarks
165+
\item Fault-tolerant QML pipelines
166+
\end{itemize}
167+
\end{frame}
168+
169+
170+
\end{document}

0 commit comments

Comments
 (0)