|
| 1 | +\documentclass{beamer} |
| 2 | +\usetheme{Madrid} |
| 3 | +\usecolortheme{seahorse} |
| 4 | +\usepackage{amsmath, amsfonts} |
| 5 | +\usepackage{graphicx} |
| 6 | +\usepackage{tikz} |
| 7 | +\usepackage{qcircuit} |
| 8 | +\usepackage{caption} |
| 9 | + |
| 10 | +\title[QML with NN]{Quantum Machine Learning with Neural Networks} |
| 11 | +\author{M Hjorth-Jensen} |
| 12 | +\institute{University of Oslo} |
| 13 | +\date{\today} |
| 14 | + |
| 15 | +\begin{document} |
| 16 | + |
| 17 | +% Title Slide |
| 18 | +\begin{frame} |
| 19 | + \titlepage |
| 20 | +\end{frame} |
| 21 | + |
| 22 | +% Outline |
| 23 | +\begin{frame}{Outline} |
| 24 | + \tableofcontents |
| 25 | +\end{frame} |
| 26 | + |
| 27 | +% Section 1 |
| 28 | +\section{Overview of QML} |
| 29 | +\begin{frame}{Quantum Machine Learning Landscape} |
| 30 | + \begin{itemize} |
| 31 | + \item Quantum Data and Classical Data: \( |\psi\rangle \) vs vectors \( \mathbf{x} \in \mathbb{R}^n \) |
| 32 | + \item Categories: |
| 33 | + \begin{itemize} |
| 34 | + \item Quantum-enhanced classical ML |
| 35 | + \item Quantum-native ML algorithms |
| 36 | + \item Hybrid quantum-classical ML |
| 37 | + \end{itemize} |
| 38 | + \item Resource-aware quantum learning models |
| 39 | + \end{itemize} |
| 40 | +\end{frame} |
| 41 | + |
| 42 | +% Section 2 |
| 43 | +\section{Quantum Computing Recap} |
| 44 | +\begin{frame}{Quantum States and Gates} |
| 45 | + \begin{itemize} |
| 46 | + \item Qubit: \( |\psi\rangle = \alpha|0\rangle + \beta|1\rangle \), \( |\alpha|^2 + |\beta|^2 = 1 \) |
| 47 | + \item Common Gates: |
| 48 | + \[ |
| 49 | + H = \frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\ 1 & -1\end{bmatrix}, \quad |
| 50 | + X = \begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix} |
| 51 | + \] |
| 52 | + \item Entanglement via CNOT and multi-qubit systems |
| 53 | + \end{itemize} |
| 54 | +\end{frame} |
| 55 | + |
| 56 | +\begin{frame}{Quantum Circuit Example} |
| 57 | +\[ |
| 58 | +\Qcircuit @C=1em @R=.7em { |
| 59 | + \lstick{|0\rangle} & \gate{H} & \ctrl{1} & \qw \\ |
| 60 | + \lstick{|0\rangle} & \qw & \targ & \qw |
| 61 | +} |
| 62 | +\] |
| 63 | +\begin{itemize} |
| 64 | + \item This circuit creates a Bell state: \( \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \) |
| 65 | + \item Essential for encoding correlations |
| 66 | +\end{itemize} |
| 67 | +\end{frame} |
| 68 | + |
| 69 | +% Section 3 |
| 70 | +\section{Neural Networks and Representational Capacity} |
| 71 | +\begin{frame}{Classical Neural Networks Review} |
| 72 | + \begin{itemize} |
| 73 | + \item Universal approximation theorem |
| 74 | + \item Layer-wise structure: \( y = \sigma(Wx + b) \) |
| 75 | + \item Deep networks and expressivity |
| 76 | + \item Limitations in high-dimensional feature space |
| 77 | + \end{itemize} |
| 78 | +\end{frame} |
| 79 | + |
| 80 | +% Section 4 |
| 81 | +\section{Quantum Neural Networks (QNN)} |
| 82 | +\begin{frame}{What is a QNN?} |
| 83 | + \begin{itemize} |
| 84 | + \item Quantum analog of classical NNs using parameterized quantum circuits (PQC) |
| 85 | + \item Data encoding layer + entangling layer + variational layer |
| 86 | + \item Output is measurement of observables |
| 87 | + \item Trainable parameters: gate angles \( \theta \) |
| 88 | + \end{itemize} |
| 89 | +\end{frame} |
| 90 | + |
| 91 | +\begin{frame}{Generic QNN Architecture} |
| 92 | +\begin{center} |
| 93 | + \includegraphics[width=0.85\linewidth]{qnn_diagram.png} % Replace with your QNN diagram |
| 94 | +\end{center} |
| 95 | +\captionof{figure}{Example architecture of a QNN: Feature map + variational layers + measurement} |
| 96 | +\end{frame} |
| 97 | + |
| 98 | +% Section 5 |
| 99 | +\section{Variational Quantum Circuits (VQCs)} |
| 100 | +\begin{frame}{Variational Quantum Circuits} |
| 101 | + \begin{itemize} |
| 102 | + \item PQCs parameterized by \( \theta \) |
| 103 | + \item Optimization via classical optimizer (e.g., COBYLA, SPSA, Adam) |
| 104 | + \item Objective: minimize loss \( L(\theta) \) based on expectation values |
| 105 | + \item Cost function: \( C(\theta) = \langle \psi(\theta)| \hat{H} |\psi(\theta)\rangle \) |
| 106 | + \end{itemize} |
| 107 | +\end{frame} |
| 108 | + |
| 109 | +\begin{frame}{Circuit Example: Ansatz Layer} |
| 110 | +\[ |
| 111 | +\Qcircuit @C=1em @R=.7em { |
| 112 | + \lstick{|x_1\rangle} & \gate{R_Y(x_1)} & \multigate{1}{Entangle} & \gate{R_Y(\theta_1)} & \qw \\ |
| 113 | + \lstick{|x_2\rangle} & \gate{R_Y(x_2)} & \ghost{Entangle} & \gate{R_Y(\theta_2)} & \qw |
| 114 | +} |
| 115 | +\] |
| 116 | +\begin{itemize} |
| 117 | + \item Hybrid encoding: data \( x_i \) and learnable parameters \( \theta_i \) |
| 118 | + \item Can be scaled for deeper architectures |
| 119 | +\end{itemize} |
| 120 | +\end{frame} |
| 121 | + |
| 122 | +% Section 6 |
| 123 | +\section{Training QNNs} |
| 124 | +\begin{frame}{Training and Optimization} |
| 125 | + \begin{itemize} |
| 126 | + \item Gradient-based: Parameter Shift Rule |
| 127 | + \[ |
| 128 | + \frac{\partial \langle O \rangle}{\partial \theta} = |
| 129 | + \frac{\langle O \rangle_{\theta + \pi/2} - \langle O \rangle_{\theta - \pi/2}}{2} |
| 130 | + \] |
| 131 | + \item Cost landscapes can suffer from barren plateaus |
| 132 | + \item Mitigation via tailored ansatz or local cost functions |
| 133 | + \end{itemize} |
| 134 | +\end{frame} |
| 135 | + |
| 136 | +% Section 7 |
| 137 | +\section{Applications} |
| 138 | +\begin{frame}{Applications of QML + NN} |
| 139 | + \begin{itemize} |
| 140 | + \item Quantum-enhanced image and speech classification |
| 141 | + \item Anomaly detection in quantum systems |
| 142 | + \item Quantum generative adversarial networks (QGANs) |
| 143 | + \item Quantum autoencoders for data compression |
| 144 | + \end{itemize} |
| 145 | +\end{frame} |
| 146 | + |
| 147 | +% Section 8 |
| 148 | +\section{Open Challenges} |
| 149 | +\begin{frame}{Challenges in QNNs} |
| 150 | + \begin{itemize} |
| 151 | + \item Hardware constraints: decoherence, limited qubits |
| 152 | + \item Barren plateau problem in deep PQCs |
| 153 | + \item Lack of general-purpose quantum optimizers |
| 154 | + \item Scaling to larger problem instances |
| 155 | + \end{itemize} |
| 156 | +\end{frame} |
| 157 | + |
| 158 | +% Section 9 |
| 159 | +\section{Conclusion and Future Work} |
| 160 | +\begin{frame}{Future Directions} |
| 161 | + \begin{itemize} |
| 162 | + \item Efficient hybrid architectures |
| 163 | + \item Adaptive circuit learning |
| 164 | + \item Near-term QML benchmarks |
| 165 | + \item Fault-tolerant QML pipelines |
| 166 | + \end{itemize} |
| 167 | +\end{frame} |
| 168 | + |
| 169 | + |
| 170 | +\end{document} |
0 commit comments