88< meta http-equiv ="Content-Type " content ="text/html; charset=utf-8 " />
99< meta name ="generator " content ="DocOnce: https://github.com/doconce/doconce/ " />
1010< meta name ="viewport " content ="width=device-width, initial-scale=1.0 " />
11- < meta name ="description " content ="Quantum Computing, Quantum Machine Learning and Quantum Information Theories ">
12- < title > Quantum Computing, Quantum Machine Learning and Quantum Information Theories </ title >
11+ < meta name ="description " content ="Quantum Computing and Quantum Machine Learning ">
12+ < title > Quantum Computing and Quantum Machine Learning </ title >
1313<!-- Bootstrap style: bootstrap -->
1414<!-- doconce format html week13.do.txt --html_style=bootstrap --pygments_html_style=default --html_admon=bootstrap_panel --html_output=week13-bs --no_mako -->
1515< link href ="https://netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css " rel ="stylesheet ">
3939 'sections': [('Plans for the week of April 21-25',
4040 2,
4141 None,
42- 'plans-for-the-week-of-april-21-25')]}
42+ 'plans-for-the-week-of-april-21-25'),
43+ ('What is Machine Learning?',
44+ 2,
45+ None,
46+ 'what-is-machine-learning'),
47+ ('What is Quantum Machine Learning?',
48+ 2,
49+ None,
50+ 'what-is-quantum-machine-learning'),
51+ ('Quantum Speedups in ML', 2, None, 'quantum-speedups-in-ml'),
52+ ('Challenges in Quantum Machine Learning',
53+ 2,
54+ None,
55+ 'challenges-in-quantum-machine-learning'),
56+ ('Classical Support Vector Machines (SVMs)',
57+ 2,
58+ None,
59+ 'classical-support-vector-machines-svms'),
60+ ('First mathematical formulation of SVMs (formal details below)',
61+ 2,
62+ None,
63+ 'first-mathematical-formulation-of-svms-formal-details-below'),
64+ ('Kernels and more', 2, None, 'kernels-and-more'),
65+ ('Quantum Support Vector Machines (QSVMs)',
66+ 2,
67+ None,
68+ 'quantum-support-vector-machines-qsvms'),
69+ ('Quantum Neural Networks (QNNs)',
70+ 2,
71+ None,
72+ 'quantum-neural-networks-qnns'),
73+ ('Quantum Boltzmann Machines (QBMs)',
74+ 2,
75+ None,
76+ 'quantum-boltzmann-machines-qbms'),
77+ ('Back to math of SVMs', 2, None, 'back-to-math-of-svms')]}
4378end of tocinfo -->
4479
4580< body >
81+
82+
83+
84+ < script type ="text/x-mathjax-config ">
85+ MathJax . Hub . Config ( {
86+ TeX : {
87+ equationNumbers : { autoNumber : "AMS" } ,
88+ extensions : [ "AMSmath.js" , "AMSsymbols.js" , "autobold.js" , "color.js" ]
89+ }
90+ } ) ;
91+ </ script >
92+ < script type ="text/javascript " async
93+ src ="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML ">
94+ </ script >
95+
96+
4697<!-- Bootstrap navigation bar -->
4798< div class ="navbar navbar-default navbar-fixed-top ">
4899 < div class ="navbar-header ">
51102 < span class ="icon-bar "> </ span >
52103 < span class ="icon-bar "> </ span >
53104 </ button >
54- < a class ="navbar-brand " href ="week13-bs.html "> Quantum Computing, Quantum Machine Learning and Quantum Information Theories </ a >
105+ < a class ="navbar-brand " href ="week13-bs.html "> Quantum Computing and Quantum Machine Learning </ a >
55106 </ div >
56107 < div class ="navbar-collapse collapse navbar-responsive-collapse ">
57108 < ul class ="nav navbar-nav navbar-right ">
58109 < li class ="dropdown ">
59110 < a href ="# " class ="dropdown-toggle " data-toggle ="dropdown "> Contents < b class ="caret "> </ b > </ a >
60111 < ul class ="dropdown-menu ">
61112 <!-- navigation toc: --> < li > < a href ="#plans-for-the-week-of-april-21-25 " style ="font-size: 80%; "> Plans for the week of April 21-25</ a > </ li >
113+ <!-- navigation toc: --> < li > < a href ="#what-is-machine-learning " style ="font-size: 80%; "> What is Machine Learning?</ a > </ li >
114+ <!-- navigation toc: --> < li > < a href ="#what-is-quantum-machine-learning " style ="font-size: 80%; "> What is Quantum Machine Learning?</ a > </ li >
115+ <!-- navigation toc: --> < li > < a href ="#quantum-speedups-in-ml " style ="font-size: 80%; "> Quantum Speedups in ML</ a > </ li >
116+ <!-- navigation toc: --> < li > < a href ="#challenges-in-quantum-machine-learning " style ="font-size: 80%; "> Challenges in Quantum Machine Learning</ a > </ li >
117+ <!-- navigation toc: --> < li > < a href ="#classical-support-vector-machines-svms " style ="font-size: 80%; "> Classical Support Vector Machines (SVMs)</ a > </ li >
118+ <!-- navigation toc: --> < li > < a href ="#first-mathematical-formulation-of-svms-formal-details-below " style ="font-size: 80%; "> First mathematical formulation of SVMs (formal details below)</ a > </ li >
119+ <!-- navigation toc: --> < li > < a href ="#kernels-and-more " style ="font-size: 80%; "> Kernels and more</ a > </ li >
120+ <!-- navigation toc: --> < li > < a href ="#quantum-support-vector-machines-qsvms " style ="font-size: 80%; "> Quantum Support Vector Machines (QSVMs)</ a > </ li >
121+ <!-- navigation toc: --> < li > < a href ="#quantum-neural-networks-qnns " style ="font-size: 80%; "> Quantum Neural Networks (QNNs)</ a > </ li >
122+ <!-- navigation toc: --> < li > < a href ="#quantum-boltzmann-machines-qbms " style ="font-size: 80%; "> Quantum Boltzmann Machines (QBMs)</ a > </ li >
123+ <!-- navigation toc: --> < li > < a href ="#back-to-math-of-svms " style ="font-size: 80%; "> Back to math of SVMs</ a > </ li >
62124
63125 </ ul >
64126 </ li >
71133<!-- ------------------- main content ---------------------- -->
72134< div class ="jumbotron ">
73135< center >
74- < h1 > Quantum Computing, Quantum Machine Learning and Quantum Information Theories </ h1 >
136+ < h1 > Quantum Computing and Quantum Machine Learning </ h1 >
75137</ center > <!-- document title -->
76138
77139<!-- author(s): Morten Hjorth-Jensen -->
@@ -98,13 +160,251 @@ <h2 id="plans-for-the-week-of-april-21-25" class="anchor">Plans for the week of
98160< div class ="panel-body ">
99161<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
100162< ol >
101- < li > TBA</ li >
102- < li > < a href ="https://youtu.be/ " target ="_self "> Video of lecture TBA</ a >
163+ < li > Quantum Machine Learning (QML)
164+ < ol type ="a "> </ li >
165+ < li > Introduction to QML</ li >
166+ < li > Support Vector Machines (SVM, classical machine learning approach)</ li >
167+ < li > Quantum Support Vector Machine Learning (QSVM)
168+ <!-- o <a href="https://youtu.be/" target="_self">Video of lecture TBA</a> -->
103169<!-- o <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2024/NotesApril17.pdf" target="_self">Whiteboard notes</a> --> </ li >
104170</ ol >
171+ </ ol >
172+ </ div >
173+ </ div >
174+
175+
176+ <!-- !split -->
177+ < h2 id ="what-is-machine-learning " class ="anchor "> What is Machine Learning? </ h2 >
178+
179+ < p > Machine Learning (ML) is the study of algorithms that improve through data experience.</ p >
180+
181+ < div class ="panel panel-default ">
182+ < div class ="panel-body ">
183+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
184+ < ol >
185+ < li > \textbf{Supervised Learning:} Labeled data for classification or regression.</ li >
186+ < li > \textbf{Unsupervised Learning:} No labels; discover hidden patterns.</ li >
187+ </ ol >
188+ < p > o\textbf{Reinforcement Learning:} Learning through interaction with the environment.</ p >
189+ </ div >
190+ </ div >
191+
192+
193+ < div class ="panel panel-default ">
194+ < div class ="panel-body ">
195+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
196+ < p > \textbf{ML Workflow:}</ p >
197+ $$
198+ \text{Data} \rightarrow \text{Model Training} \rightarrow \text{Prediction}
199+ $$
200+ </ div >
201+ </ div >
202+
203+
204+ <!-- !split -->
205+ < h2 id ="what-is-quantum-machine-learning " class ="anchor "> What is Quantum Machine Learning? </ h2 >
206+
207+ < p > \textbf{Quantum Machine Learning (QML)} integrates quantum computing with machine learning algorithms to exploit quantum advantages.</ p >
208+
209+ < div class ="panel panel-default ">
210+ < div class ="panel-body ">
211+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
212+ < ol >
213+ < li > High-dimensional Hilbert spaces for better feature representation.</ li >
214+ < li > Quantum parallelism for faster computation.</ li >
215+ < li > Quantum entanglement for richer data encoding.</ li >
216+ </ ol >
217+ </ div >
218+ </ div >
219+
220+
221+ <!-- !split -->
222+ < h2 id ="quantum-speedups-in-ml " class ="anchor "> Quantum Speedups in ML </ h2 >
223+ < p > \textbf{Why Quantum?}</ p >
224+ < div class ="panel panel-default ">
225+ < div class ="panel-body ">
226+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
227+ < ol >
228+ < li > \textbf{Quantum Parallelism:} Process multiple states simultaneously.</ li >
229+ < li > \textbf{Quantum Entanglement:} Correlated states for richer information.</ li >
230+ < li > \textbf{Quantum Interference:} Constructive and destructive interference to enhance solutions.</ li >
231+ </ ol >
232+ </ div >
233+ </ div >
234+
235+
236+ < div class ="panel panel-default ">
237+ < div class ="panel-body ">
238+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
239+ < p > Example - Grover's Algorithm:</ p >
240+ $$
241+ \text{Quantum Search Complexity: } O(\sqrt{N}) \text{ vs. } O(N)
242+ $$
243+ </ div >
244+ </ div >
245+
246+
247+ < p > Advantage: Speedups in high-dimensional optimization and linear algebra problems.</ p >
248+
249+ <!-- !split -->
250+ < h2 id ="challenges-in-quantum-machine-learning " class ="anchor "> Challenges in Quantum Machine Learning </ h2 >
251+
252+ < div class ="panel panel-default ">
253+ < div class ="panel-body ">
254+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
255+ < ol >
256+ < li > Noisy Intermediate-Scale Quantum (NISQ) devices.</ li >
257+ < li > Decoherence and limited qubit coherence times.</ li >
258+ </ ol >
259+ </ div >
260+ </ div >
261+
262+
263+ < div class ="panel panel-default ">
264+ < div class ="panel-body ">
265+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
266+ < ol >
267+ < li > Efficient embedding of classical data into quantum states.</ li >
268+ </ ol >
269+ </ div >
270+ </ div >
271+
272+
273+ < div class ="panel panel-default ">
274+ < div class ="panel-body ">
275+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
276+ < ol >
277+ < li > Difficult to scale circuits to large datasets.</ li >
278+ </ ol >
279+ </ div >
280+ </ div >
281+
282+
283+ <!-- !split -->
284+ < h2 id ="classical-support-vector-machines-svms " class ="anchor "> Classical Support Vector Machines (SVMs) </ h2 >
285+
286+ < p > Support Vector Machines (SVM) are supervised learning algorithms used
287+ for classification tasks, and regression tasks as well. The main goal
288+ of SVMs is to find the optimal separating hyperplane (in
289+ high-dimensional space) that provides a maximum margin between
290+ classes.
291+ </ p >
292+
293+ <!-- !split -->
294+ < h2 id ="first-mathematical-formulation-of-svms-formal-details-below " class ="anchor "> First mathematical formulation of SVMs (formal details below) </ h2 >
295+
296+ < p > For a dataset \((\mathbf{x}_i, y_i)\) where \(\mathbf{x}_i \in
297+ \mathbb{R}^n\) and \(y_i \in \{-1, 1\}\), the decision boundary is
298+ defined as:
299+ </ p >
300+ $$
301+ f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = 0.
302+ $$
303+
304+ < p > The goal is to optimize</ p >
305+ $$
306+ \min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2,
307+ $$
308+
309+ < p > subject to</ p >
310+ $$
311+ y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1, \quad \forall i
312+ $$
313+
314+
315+ <!-- !split -->
316+ < h2 id ="kernels-and-more " class ="anchor "> Kernels and more </ h2 >
317+
318+ < p > In classical SVMs, kernels help with non-linear data
319+ separations. Quantum computers can speed up the computation of complex
320+ kernel evaluations by efficiently simulating an inner product in an
321+ exponentially large Hilbert space.
322+ </ p >
323+
324+ <!-- !split -->
325+ < h2 id ="quantum-support-vector-machines-qsvms " class ="anchor "> Quantum Support Vector Machines (QSVMs) </ h2 >
326+
327+ < div class ="panel panel-default ">
328+ < div class ="panel-body ">
329+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
330+ < ol >
331+ < li > Maps classical data to a quantum Hilbert space.</ li >
332+ < li > Quantum kernel measures similarity in high-dimensional space.</ li >
333+ </ ol >
334+ </ div >
335+ </ div >
336+
337+
338+ < div class ="panel panel-default ">
339+ < div class ="panel-body ">
340+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
341+ $$
342+ K(\boldsymbol{x}, \boldsymbol{x}') = |\langle \psi(\boldsymbol{x}) \vert \psi(\boldsymbol{x}')\rangle|^2
343+ $$
344+ </ div >
345+ </ div >
346+
347+
348+ < p > Here, \( \vert \phi(\boldsymbol{x})\rangle \) is the quantum state encoding of
349+ the classical data \( \boldsymbol{x} \).
350+ </ p >
351+
352+ < p > Advantage: Potentially exponential speedup over classical SVMs.</ p >
353+
354+ <!-- !split -->
355+ < h2 id ="quantum-neural-networks-qnns " class ="anchor "> Quantum Neural Networks (QNNs) </ h2 >
356+
357+ < p > Quantum Neural Networks replace classical neurons with parameterized quantum circuits.</ p >
358+ < div class ="panel panel-default ">
359+ < div class ="panel-body ">
360+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
361+ < ol >
362+ < li > Quantum Gates as Activation Functions.</ li >
363+ < li > Variational Quantum Circuits (VQCs) for optimization.</ li >
364+ </ ol >
365+ </ div >
366+ </ div >
367+
368+ < div class ="panel panel-default ">
369+ < div class ="panel-body ">
370+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
371+ < p > \textbf{Parameterized Quantum Circuit:}</ p >
372+ $$
373+ U(\theta) = \prod_i R_y(\theta_i) \cdot CNOT \cdot R_x(\theta_i)
374+ $$
375+ </ div >
376+ </ div >
377+
378+ < p > Advantage:Quantum gradients enable exploration of non-convex landscapes.</ p >
379+
380+ <!-- !split -->
381+ < h2 id ="quantum-boltzmann-machines-qbms " class ="anchor "> Quantum Boltzmann Machines (QBMs) </ h2 >
382+
383+ < p > Quantum Boltzmann Machines leverage quantum mechanics to sample from a probability distribution.</ p >
384+
385+ < div class ="panel panel-default ">
386+ < div class ="panel-body ">
387+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
388+ < ol >
389+ < li > Quantum tunneling aids in escaping local minima.</ li >
390+ < li > Quantum annealing for optimization problems.</ li >
391+ </ ol >
392+ </ div >
393+ </ div >
394+
395+ < div class ="panel panel-default ">
396+ < div class ="panel-body ">
397+ <!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
398+ $$
399+ H = -\sum_i b_i \sigma_i^z - \sum_{ij} w_{ij} \sigma_i^z \sigma_j^z
400+ $$
105401</ div >
106402</ div >
107403
404+ < p > Advantage: Efficient sampling in complex probability distributions.</ p >
405+
406+ <!-- !split -->
407+ < h2 id ="back-to-math-of-svms " class ="anchor "> Back to math of SVMs </ h2 >
108408
109409<!-- ------------------- end of main content --------------- -->
110410</ div > <!-- end container -->
@@ -117,7 +417,7 @@ <h2 id="plans-for-the-week-of-april-21-25" class="anchor">Plans for the week of
117417</footer>
118418-->
119419< center style ="font-size:80% ">
120- <!-- copyright --> © 1999-2024 , Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
420+ <!-- copyright --> © 1999-2025 , Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
121421</ center >
122422</ body >
123423</ html >
0 commit comments