199199 2,
200200 None,
201201 'the-code-for-the-one-qubit-case'),
202+ ('Two-qubit Hamiltonian', 2, None, 'two-qubit-hamiltonian'),
203+ ('Definitions', 2, None, 'definitions'),
204+ ('The Hamiltonian in terms of Pauli-$\\boldsymbol{X}$ and '
205+ 'Pauli-$\\boldsymbol{Z}$ matrices',
206+ 2,
207+ None,
208+ 'the-hamiltonian-in-terms-of-pauli-boldsymbol-x-and-pauli-boldsymbol-z-matrices'),
209+ ('How do we perform measurements?',
210+ 2,
211+ None,
212+ 'how-do-we-perform-measurements'),
213+ ('Explicit expressions', 2, None, 'explicit-expressions'),
202214 ('Plans for the week of February March 1',
203215 2,
204216 None,
310322 <!-- navigation toc: --> < li > < a href ="#computing-quantum-gradients " style ="font-size: 80%; "> Computing quantum gradients</ a > </ li >
311323 <!-- navigation toc: --> < li > < a href ="#a-smarter-way-of-doing-this " style ="font-size: 80%; "> A smarter way of doing this</ a > </ li >
312324 <!-- navigation toc: --> < li > < a href ="#the-code-for-the-one-qubit-case " style ="font-size: 80%; "> The code for the one qubit case</ a > </ li >
325+ <!-- navigation toc: --> < li > < a href ="#two-qubit-hamiltonian " style ="font-size: 80%; "> Two-qubit Hamiltonian</ a > </ li >
326+ <!-- navigation toc: --> < li > < a href ="#definitions " style ="font-size: 80%; "> Definitions</ a > </ li >
327+ <!-- navigation toc: --> < li > < a href ="#the-hamiltonian-in-terms-of-pauli-boldsymbol-x-and-pauli-boldsymbol-z-matrices " style ="font-size: 80%; "> The Hamiltonian in terms of Pauli-\( \boldsymbol{X} \) and Pauli-\( \boldsymbol{Z} \) matrices</ a > </ li >
328+ <!-- navigation toc: --> < li > < a href ="#how-do-we-perform-measurements " style ="font-size: 80%; "> How do we perform measurements?</ a > </ li >
329+ <!-- navigation toc: --> < li > < a href ="#explicit-expressions " style ="font-size: 80%; "> Explicit expressions</ a > </ li >
313330 <!-- navigation toc: --> < li > < a href ="#plans-for-the-week-of-february-march-1 " style ="font-size: 80%; "> Plans for the week of February March 1</ a > </ li >
314331
315332 </ ul >
@@ -351,7 +368,8 @@ <h2 id="plans-for-the-week-of-february-24-28-solving-quantum-mechanical-problems
351368<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
352369< ol >
353370 < li > Repetition from last week on gates, measurements and one-qubit systems</ li >
354- < li > Introducing the Variational Quantum Eigensolver (VQE) and discussion of project 1
371+ < li > Introducing the Variational Quantum Eigensolver (VQE) and discussion of project 1</ li >
372+ < li > Rewriting the two-qubit Hamiltonian in terms of Pauli matrices
355373<!-- o <a href="https://youtu.be/" target="_self">Video of lecture to be added</a> -->
356374<!-- o <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2024/NotesFebruary21.pdf" target="_self">Whiteboard notes</a> --> </ li >
357375</ ol >
@@ -2070,6 +2088,102 @@ <h2 id="the-code-for-the-one-qubit-case" class="anchor">The code for the one qub
20702088</ div >
20712089
20722090
2091+ <!-- !split -->
2092+ < h2 id ="two-qubit-hamiltonian " class ="anchor "> Two-qubit Hamiltonian </ h2 >
2093+
2094+ < p > We end this lecture with a discussion on how to rewrite the two-qubit Hamiltonian rom last week (and project 1)</ p >
2095+ $$
2096+ \mathcal{H}=\begin{bmatrix} \epsilon_{1}+V_z & 0 & 0 & V_x \\
2097+ 0 & \epsilon_{2}-V_z & V_x & 0 \\
2098+ 0 & H_x & \epsilon_{3}-V_z & 0 \\
2099+ H_x & 0 & 0 & \epsilon_{4} +V_z \end{bmatrix}.
2100+ $$
2101+
2102+ < p > This Hamiltonian can be rewritten in terms of various one-qubit matrices.</ p >
2103+
2104+ <!-- !split -->
2105+ < h2 id ="definitions " class ="anchor "> Definitions </ h2 >
2106+
2107+ < p > We define</ p >
2108+ $$
2109+ \epsilon_{II}=\frac{\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}}{4},
2110+ $$
2111+
2112+ $$
2113+ \epsilon_{ZI}=\frac{\epsilon_{1}+\epsilon_{2}-\epsilon_{3}-\epsilon_{4}}{4},
2114+ $$
2115+
2116+ $$
2117+ \epsilon_{IZ}=\frac{\epsilon_{1}-\epsilon_{2}+\epsilon_{3}-\epsilon_{4}}{4},
2118+ $$
2119+
2120+ $$
2121+ \epsilon_{ZZ}=\frac{\epsilon_{1}-\epsilon_{2}-\epsilon_{3}+\epsilon_{4}}{4}.
2122+ $$
2123+
2124+
2125+ <!-- !split -->
2126+ < h2 id ="the-hamiltonian-in-terms-of-pauli-boldsymbol-x-and-pauli-boldsymbol-z-matrices " class ="anchor "> The Hamiltonian in terms of Pauli-\( \boldsymbol{X} \) and Pauli-\( \boldsymbol{Z} \) matrices </ h2 >
2127+
2128+ < p > With these definitions we can rewrite our two-qubit Hamiltonian as</ p >
2129+ $$
2130+ \mathcal{H}=\mathcal{H}_0+\mathcal{H}_I
2131+ $$
2132+
2133+ < p > with</ p >
2134+ $$
2135+ \mathcal{H}_0=\epsilon_{II}\boldsymbol{I}\otimes\boldsymbol{I}+\epsilon_{ZI}\boldsymbol{Z}\otimes\boldsymbol{I}+\epsilon_{IZ}\boldsymbol{I}\otimes\boldsymbol{Z}+\epsilon_{II}+\epsilon_{ZZ}\boldsymbol{Z}\otimes\boldsymbol{Z},
2136+ $$
2137+
2138+ < p > and</ p >
2139+ $$
2140+ \mathcal{H}_I=V_z\boldsymbol{Z}\otimes\boldsymbol{Z}+V_x\boldsymbol{X}\otimes\boldsymbol{X}.
2141+ $$
2142+
2143+
2144+ <!-- !split -->
2145+ < h2 id ="how-do-we-perform-measurements " class ="anchor "> How do we perform measurements? </ h2 >
2146+
2147+ < p > The above tensor products need to rewritten in terms of specific
2148+ transformations so that we can perform the measumrents in the basis of
2149+ the Pauli-\( \boldsymbol{Z} \) matrices. As we discussed earlier, we need to find
2150+ a transformation of the form
2151+ </ p >
2152+ $$
2153+ \mathcal{P}=\boldsymbol{U}^{\dagger}\boldsymbol{M}\boldsymbol{U},
2154+ $$
2155+
2156+ < p > where \( \mathcal{P} \) represents some combination of the Pauli matrices and
2157+ the identity matrix, \( \boldsymbol{U} \) is a unitary matrix and \( \boldsymbol{M} \)
2158+ represents the gate/matrix which performs the measurements, often
2159+ represented by a Pauli-\( \boldsymbol{Z} \) gate/matrix.
2160+ </ p >
2161+
2162+ < p > The implementation of these measurements will be discussed next week.</ p >
2163+
2164+ <!-- !split -->
2165+ < h2 id ="explicit-expressions " class ="anchor "> Explicit expressions </ h2 >
2166+ < p > In order to perform our measurements, will then need the following operators \( \boldsymbol{U} \)</ p >
2167+ $$
2168+ \begin{align*}
2169+ \boldsymbol{Z}\otimes\boldsymbol{I} & \boldsymbol{U}=\boldsymbol{I}\otimes\boldsymbol{I}\\
2170+ \boldsymbol{I}\otimes\boldsymbol{Z} & \boldsymbol{U}=\text{SWAP}\\
2171+ \boldsymbol{Z}\otimes\boldsymbol{Z} & \boldsymbol{U}=CX_{10}\\
2172+ \boldsymbol{X}\otimes\boldsymbol{X} & \boldsymbol{U}=CX_{10}(\boldsymbol{H}\otimes\boldsymbol{H}\\
2173+ \end{align*}
2174+ $$
2175+
2176+ < p > where we have </ p >
2177+ $$
2178+ \text{CX}_{10} = \begin{bmatrix}
2179+ 0 & 1 & 0 & 0 \\
2180+ 1 & 0 & 0 & 0 \\
2181+ 0 & 0 & 1 & 0 \\
2182+ 0 & 0 & 0 & 1
2183+ \end{bmatrix}.
2184+ $$
2185+
2186+
20732187<!-- !split -->
20742188< h2 id ="plans-for-the-week-of-february-march-1 " class ="anchor "> Plans for the week of February March 1 </ h2 >
20752189
@@ -2085,6 +2199,7 @@ <h2 id="plans-for-the-week-of-february-march-1" class="anchor">Plans for the wee
20852199</ div >
20862200</ div >
20872201
2202+
20882203<!-- ------------------- end of main content --------------- -->
20892204</ div > <!-- end container -->
20902205<!-- include javascript, jQuery *first* -->
0 commit comments