Skip to content

Commit e80add3

Browse files
committed
week 1
1 parent 57cdd93 commit e80add3

File tree

8 files changed

+311
-279
lines changed

8 files changed

+311
-279
lines changed

doc/pub/week1/html/week1-bs.html

Lines changed: 18 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -83,10 +83,10 @@
8383
2,
8484
None,
8585
'good-books-with-hands-on-material-and-codes'),
86-
('Twst yourself: Deep learning 1',
86+
('Test yourself: Deep learning 1',
8787
2,
8888
None,
89-
'twst-yourself-deep-learning-1'),
89+
'test-yourself-deep-learning-1'),
9090
('Test yourself: Deep learning 2',
9191
2,
9292
None,
@@ -376,7 +376,7 @@
376376
<!-- navigation toc: --> <li><a href="#gaussian-processes-and-bayesian-analysis" style="font-size: 80%;">Gaussian processes and Bayesian analysis</a></li>
377377
<!-- navigation toc: --> <li><a href="#hpc-path" style="font-size: 80%;">HPC path</a></li>
378378
<!-- navigation toc: --> <li><a href="#good-books-with-hands-on-material-and-codes" style="font-size: 80%;">Good books with hands-on material and codes</a></li>
379-
<!-- navigation toc: --> <li><a href="#twst-yourself-deep-learning-1" style="font-size: 80%;">Twst yourself: Deep learning 1</a></li>
379+
<!-- navigation toc: --> <li><a href="#test-yourself-deep-learning-1" style="font-size: 80%;">Test yourself: Deep learning 1</a></li>
380380
<!-- navigation toc: --> <li><a href="#test-yourself-deep-learning-2" style="font-size: 80%;">Test yourself: Deep learning 2</a></li>
381381
<!-- navigation toc: --> <li><a href="#test-yourself-optimization-part" style="font-size: 80%;">Test yourself: Optimization part</a></li>
382382
<!-- navigation toc: --> <li><a href="#test-yourself-analysis-of-results" style="font-size: 80%;">Test yourself: Analysis of results</a></li>
@@ -491,12 +491,12 @@ <h2 id="overview-of-first-week-january-19-23-2026" class="anchor">Overview of fi
491491
<div class="panel-body">
492492
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
493493
<ol>
494-
<li> Presentation of course</li>
495-
<li> Discussion of possible projects</li>
496-
<li> Deep learning methods, mathematics and review of neural networks
494+
<li> Presentation of course</li>
495+
<li> Discussion of possible projects</li>
496+
<li> Deep learning methods, mathematics and review of neural networks
497497
<!-- o "Video of lecture at <a href="https://youtu.be/SY57dC46L9o" target="_self"><tt>https://youtu.be/SY57dC46L9o</tt></a> --></li>
498-
<li> Recommended reading first three weeks: Raschka et al chapter 11 and Goodfellow et al chapters 6 and 7</li>
499-
<li> Permanent Zoom link for the whole semester is <a href="https://uio.zoom.us/my/mortenhj" target="_self"><tt>https://uio.zoom.us/my/mortenhj</tt></a></li>
498+
<li> Recommended reading first three weeks: Raschka et al chapters 11-12 and Goodfellow et al chapters 6-8</li>
499+
<li> Permanent Zoom link for the whole semester is <a href="https://uio.zoom.us/my/mortenhj" target="_self"><tt>https://uio.zoom.us/my/mortenhj</tt></a></li>
500500
</ol>
501501
</div>
502502
</div>
@@ -564,6 +564,8 @@ <h2 id="additional-topics-kernel-regression-gaussian-processes-and-bayesian-stat
564564
variable).
565565
</p>
566566

567+
<p>These topics are not covered by the lectures but can be used to define projects.</p>
568+
567569
<!-- !split -->
568570
<h2 id="project-paths-overarching-view" class="anchor">Project paths, overarching view </h2>
569571

@@ -671,14 +673,18 @@ <h2 id="good-books-with-hands-on-material-and-codes" class="anchor">Good books w
671673
</p>
672674

673675
<!-- !split -->
674-
<h2 id="twst-yourself-deep-learning-1" class="anchor">Twst yourself: Deep learning 1 </h2>
676+
<h2 id="test-yourself-deep-learning-1" class="anchor">Test yourself: Deep learning 1 </h2>
677+
678+
<p>Deep learning (essentially neural networks)
679+
background knowledge we deem important to be familiar with.
680+
</p>
675681

676682
<ol>
677-
<li> Describe the architecture of a typical feed forward Neural Network (NN).</li>
683+
<li> Can you describe the architecture of a typical feed forward Neural Network (NN).</li>
678684
<li> What is an activation function and discuss the use of an activation function.</li>
679685
<li> Can you name and explain three different types of activation functions?</li>
680686
<li> You are using a deep neural network for a prediction task. After training your model, you notice that it is strongly overfitting the training set and that the performance on the test isn&#8217;t good. What can you do to reduce overfitting?</li>
681-
<li> How would you know if your model is suffering from the problem of exploding Gradients?</li>
687+
<li> How would you know if your model is suffering from the problem of exploding gradients?</li>
682688
<li> Can you name and explain a few hyperparameters used for training a neural network?</li>
683689
</ol>
684690
<!-- !split -->
@@ -1960,7 +1966,7 @@ <h2 id="updating-the-gradients" class="anchor">Updating the gradients </h2>
19601966
</footer>
19611967
-->
19621968
<center style="font-size:80%">
1963-
<!-- copyright --> &copy; 1999-2025, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
1969+
<!-- copyright --> &copy; 1999-2026, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
19641970
</center>
19651971
</body>
19661972
</html>

doc/pub/week1/html/week1-reveal.html

Lines changed: 15 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -187,7 +187,7 @@ <h4>January 22, 2026</h4>
187187

188188

189189
<center style="font-size:80%">
190-
<!-- copyright --> &copy; 1999-2025, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
190+
<!-- copyright --> &copy; 1999-2026, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
191191
</center>
192192
</section>
193193

@@ -198,12 +198,12 @@ <h2 id="overview-of-first-week-january-19-23-2026">Overview of first week, Janua
198198
<b></b>
199199
<p>
200200
<ol>
201-
<p><li> Presentation of course</li>
202-
<p><li> Discussion of possible projects</li>
203-
<p><li> Deep learning methods, mathematics and review of neural networks
201+
<p><li> Presentation of course</li>
202+
<p><li> Discussion of possible projects</li>
203+
<p><li> Deep learning methods, mathematics and review of neural networks
204204
<!-- o "Video of lecture at <a href="https://youtu.be/SY57dC46L9o" target="_blank"><tt>https://youtu.be/SY57dC46L9o</tt></a> --></li>
205-
<p><li> Recommended reading first three weeks: Raschka et al chapter 11 and Goodfellow et al chapters 6 and 7</li>
206-
<p><li> Permanent Zoom link for the whole semester is <a href="https://uio.zoom.us/my/mortenhj" target="_blank"><tt>https://uio.zoom.us/my/mortenhj</tt></a></li>
205+
<p><li> Recommended reading first three weeks: Raschka et al chapters 11-12 and Goodfellow et al chapters 6-8</li>
206+
<p><li> Permanent Zoom link for the whole semester is <a href="https://uio.zoom.us/my/mortenhj" target="_blank"><tt>https://uio.zoom.us/my/mortenhj</tt></a></li>
207207
</ol>
208208
</div>
209209
</section>
@@ -281,6 +281,8 @@ <h2 id="additional-topics-kernel-regression-gaussian-processes-and-bayesian-stat
281281
large number of variables and a particular outcome (dependent
282282
variable).
283283
</p>
284+
285+
<p>These topics are not covered by the lectures but can be used to define projects.</p>
284286
</section>
285287

286288
<section>
@@ -397,14 +399,18 @@ <h2 id="good-books-with-hands-on-material-and-codes">Good books with hands-on ma
397399
</section>
398400

399401
<section>
400-
<h2 id="twst-yourself-deep-learning-1">Twst yourself: Deep learning 1 </h2>
402+
<h2 id="test-yourself-deep-learning-1">Test yourself: Deep learning 1 </h2>
403+
404+
<p>Deep learning (essentially neural networks)
405+
background knowledge we deem important to be familiar with.
406+
</p>
401407

402408
<ol>
403-
<p><li> Describe the architecture of a typical feed forward Neural Network (NN).</li>
409+
<p><li> Can you describe the architecture of a typical feed forward Neural Network (NN).</li>
404410
<p><li> What is an activation function and discuss the use of an activation function.</li>
405411
<p><li> Can you name and explain three different types of activation functions?</li>
406412
<p><li> You are using a deep neural network for a prediction task. After training your model, you notice that it is strongly overfitting the training set and that the performance on the test isn&#8217;t good. What can you do to reduce overfitting?</li>
407-
<p><li> How would you know if your model is suffering from the problem of exploding Gradients?</li>
413+
<p><li> How would you know if your model is suffering from the problem of exploding gradients?</li>
408414
<p><li> Can you name and explain a few hyperparameters used for training a neural network?</li>
409415
</ol>
410416
</section>

doc/pub/week1/html/week1-solarized.html

Lines changed: 17 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -110,10 +110,10 @@
110110
2,
111111
None,
112112
'good-books-with-hands-on-material-and-codes'),
113-
('Twst yourself: Deep learning 1',
113+
('Test yourself: Deep learning 1',
114114
2,
115115
None,
116-
'twst-yourself-deep-learning-1'),
116+
'test-yourself-deep-learning-1'),
117117
('Test yourself: Deep learning 2',
118118
2,
119119
None,
@@ -399,12 +399,12 @@ <h2 id="overview-of-first-week-january-19-23-2026">Overview of first week, Janua
399399
<b></b>
400400
<p>
401401
<ol>
402-
<li> Presentation of course</li>
403-
<li> Discussion of possible projects</li>
404-
<li> Deep learning methods, mathematics and review of neural networks
402+
<li> Presentation of course</li>
403+
<li> Discussion of possible projects</li>
404+
<li> Deep learning methods, mathematics and review of neural networks
405405
<!-- o "Video of lecture at <a href="https://youtu.be/SY57dC46L9o" target="_blank"><tt>https://youtu.be/SY57dC46L9o</tt></a> --></li>
406-
<li> Recommended reading first three weeks: Raschka et al chapter 11 and Goodfellow et al chapters 6 and 7</li>
407-
<li> Permanent Zoom link for the whole semester is <a href="https://uio.zoom.us/my/mortenhj" target="_blank"><tt>https://uio.zoom.us/my/mortenhj</tt></a></li>
406+
<li> Recommended reading first three weeks: Raschka et al chapters 11-12 and Goodfellow et al chapters 6-8</li>
407+
<li> Permanent Zoom link for the whole semester is <a href="https://uio.zoom.us/my/mortenhj" target="_blank"><tt>https://uio.zoom.us/my/mortenhj</tt></a></li>
408408
</ol>
409409
</div>
410410

@@ -471,6 +471,8 @@ <h2 id="additional-topics-kernel-regression-gaussian-processes-and-bayesian-stat
471471
variable).
472472
</p>
473473

474+
<p>These topics are not covered by the lectures but can be used to define projects.</p>
475+
474476
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
475477
<h2 id="project-paths-overarching-view">Project paths, overarching view </h2>
476478

@@ -577,14 +579,18 @@ <h2 id="good-books-with-hands-on-material-and-codes">Good books with hands-on ma
577579
</p>
578580

579581
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
580-
<h2 id="twst-yourself-deep-learning-1">Twst yourself: Deep learning 1 </h2>
582+
<h2 id="test-yourself-deep-learning-1">Test yourself: Deep learning 1 </h2>
583+
584+
<p>Deep learning (essentially neural networks)
585+
background knowledge we deem important to be familiar with.
586+
</p>
581587

582588
<ol>
583-
<li> Describe the architecture of a typical feed forward Neural Network (NN).</li>
589+
<li> Can you describe the architecture of a typical feed forward Neural Network (NN).</li>
584590
<li> What is an activation function and discuss the use of an activation function.</li>
585591
<li> Can you name and explain three different types of activation functions?</li>
586592
<li> You are using a deep neural network for a prediction task. After training your model, you notice that it is strongly overfitting the training set and that the performance on the test isn&#8217;t good. What can you do to reduce overfitting?</li>
587-
<li> How would you know if your model is suffering from the problem of exploding Gradients?</li>
593+
<li> How would you know if your model is suffering from the problem of exploding gradients?</li>
588594
<li> Can you name and explain a few hyperparameters used for training a neural network?</li>
589595
</ol>
590596
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
@@ -1838,7 +1844,7 @@ <h2 id="updating-the-gradients">Updating the gradients </h2>
18381844

18391845
<!-- ------------------- end of main content --------------- -->
18401846
<center style="font-size:80%">
1841-
<!-- copyright --> &copy; 1999-2025, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
1847+
<!-- copyright --> &copy; 1999-2026, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
18421848
</center>
18431849
</body>
18441850
</html>

doc/pub/week1/html/week1.html

Lines changed: 17 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -187,10 +187,10 @@
187187
2,
188188
None,
189189
'good-books-with-hands-on-material-and-codes'),
190-
('Twst yourself: Deep learning 1',
190+
('Test yourself: Deep learning 1',
191191
2,
192192
None,
193-
'twst-yourself-deep-learning-1'),
193+
'test-yourself-deep-learning-1'),
194194
('Test yourself: Deep learning 2',
195195
2,
196196
None,
@@ -476,12 +476,12 @@ <h2 id="overview-of-first-week-january-19-23-2026">Overview of first week, Janua
476476
<b></b>
477477
<p>
478478
<ol>
479-
<li> Presentation of course</li>
480-
<li> Discussion of possible projects</li>
481-
<li> Deep learning methods, mathematics and review of neural networks
479+
<li> Presentation of course</li>
480+
<li> Discussion of possible projects</li>
481+
<li> Deep learning methods, mathematics and review of neural networks
482482
<!-- o "Video of lecture at <a href="https://youtu.be/SY57dC46L9o" target="_blank"><tt>https://youtu.be/SY57dC46L9o</tt></a> --></li>
483-
<li> Recommended reading first three weeks: Raschka et al chapter 11 and Goodfellow et al chapters 6 and 7</li>
484-
<li> Permanent Zoom link for the whole semester is <a href="https://uio.zoom.us/my/mortenhj" target="_blank"><tt>https://uio.zoom.us/my/mortenhj</tt></a></li>
483+
<li> Recommended reading first three weeks: Raschka et al chapters 11-12 and Goodfellow et al chapters 6-8</li>
484+
<li> Permanent Zoom link for the whole semester is <a href="https://uio.zoom.us/my/mortenhj" target="_blank"><tt>https://uio.zoom.us/my/mortenhj</tt></a></li>
485485
</ol>
486486
</div>
487487

@@ -548,6 +548,8 @@ <h2 id="additional-topics-kernel-regression-gaussian-processes-and-bayesian-stat
548548
variable).
549549
</p>
550550

551+
<p>These topics are not covered by the lectures but can be used to define projects.</p>
552+
551553
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
552554
<h2 id="project-paths-overarching-view">Project paths, overarching view </h2>
553555

@@ -654,14 +656,18 @@ <h2 id="good-books-with-hands-on-material-and-codes">Good books with hands-on ma
654656
</p>
655657

656658
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
657-
<h2 id="twst-yourself-deep-learning-1">Twst yourself: Deep learning 1 </h2>
659+
<h2 id="test-yourself-deep-learning-1">Test yourself: Deep learning 1 </h2>
660+
661+
<p>Deep learning (essentially neural networks)
662+
background knowledge we deem important to be familiar with.
663+
</p>
658664

659665
<ol>
660-
<li> Describe the architecture of a typical feed forward Neural Network (NN).</li>
666+
<li> Can you describe the architecture of a typical feed forward Neural Network (NN).</li>
661667
<li> What is an activation function and discuss the use of an activation function.</li>
662668
<li> Can you name and explain three different types of activation functions?</li>
663669
<li> You are using a deep neural network for a prediction task. After training your model, you notice that it is strongly overfitting the training set and that the performance on the test isn&#8217;t good. What can you do to reduce overfitting?</li>
664-
<li> How would you know if your model is suffering from the problem of exploding Gradients?</li>
670+
<li> How would you know if your model is suffering from the problem of exploding gradients?</li>
665671
<li> Can you name and explain a few hyperparameters used for training a neural network?</li>
666672
</ol>
667673
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
@@ -1915,7 +1921,7 @@ <h2 id="updating-the-gradients">Updating the gradients </h2>
19151921

19161922
<!-- ------------------- end of main content --------------- -->
19171923
<center style="font-size:80%">
1918-
<!-- copyright --> &copy; 1999-2025, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
1924+
<!-- copyright --> &copy; 1999-2026, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license
19191925
</center>
19201926
</body>
19211927
</html>
0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)