Skip to content

Commit e5a1816

Browse files
committed
Update README.md
1 parent d0d1465 commit e5a1816

File tree

1 file changed

+5
-13
lines changed

1 file changed

+5
-13
lines changed

README.md

Lines changed: 5 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -83,28 +83,24 @@ paths:
8383
- Mathematics of convolutional neural networks
8484
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week4/ipynb/week4.ipynb
8585
- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
86-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary6.pdf
8786

8887

8988
## February 17-21
9089
- Mathematics of CNNs and discussion of codes
9190
- Recurrent neural networks (RNNs)
92-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary13.pdf
9391
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week5/ipynb/week5.ipynb
9492
- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
9593

9694
## February 24-28
9795
- Mathematics of recurrent neural networks
9896
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week6/ipynb/week6.ipynb
9997
- Recommended reading Goodfellow et al chapters 9 and 10 and Raschka et al chapters 14 and 15
100-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary20.pdf
10198

10299
## March 3-7
103100
- Recurrent neural networks and codes
104101
- Long-Short-Term memory and applications to differential equations
105102
- Graph neural network (GNN)s
106103
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week7/ipynb/week7.ipynb
107-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary27.pdf
108104
- Recommended reading Goodfellow et al chapters 10 and Raschka et al chapter 15 and 18
109105

110106

@@ -113,13 +109,11 @@ paths:
113109
- Autoencoders and PCA
114110
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week8/ipynb/week8.ipynb
115111
- Recommended reading Goodfellow et al chapter 14 for Autoenconders and Rashcka et al chapter 18
116-
- Whiteboard notes https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch5.pdf
117112

118113
## March 17-21: Autoencoders
119114
- Autoencoders and links with Principal Component Analysis. Discussion of AE implementations
120115
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week9/ipynb/week9.ipynb
121116
- Reading recommendation: Goodfellow et al chapter 14
122-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch12.pdf
123117

124118

125119
## March 24-28: Generative models
@@ -128,15 +122,13 @@ paths:
128122
- Boltzmann machines
129123
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week10/ipynb/week10.ipynb
130124
- Reading recommendation: Goodfellow et al chapters 16-18
131-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch19.pdf
132125

133126
## March 31-April 4: Deep generative models, Boltzmann machines
134127
- Restricted Boltzmann machines
135128
- Reminder on Markov Chain Monte Carlo and Gibbs sampling
136129
- Discussions of various Boltzmann machines
137130
- Reading recommendation: Goodfellow et al chapters 16, 17 and 18
138131
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week11/ipynb/week11.ipynb
139-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril2.pdf
140132

141133

142134
## April 7-11: Deep generative models
@@ -145,8 +137,8 @@ paths:
145137
- Generative Adversarial Networks (GANs)
146138
- Reading recommendation: Goodfellow et al chapters 18.1-18.2, 20.1-20-7; To create Boltzmann machine using Keras, see Babcock and Bali chapter 4
147139
- See also Foster, chapter 7 on energy-based models
148-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril10.pdf
149140

141+
## April 14-18: Public holiday, no lectures
150142

151143
## April 21-25: Deep generative models
152144

@@ -155,23 +147,23 @@ paths:
155147
- Reading recommendation: Goodfellow et al chapter 20.10-20.14
156148
- See also Foster, chapter 7 on energy-based models
157149
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week13/ipynb/week13.ipynb
158-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril24.pdf
150+
151+
## April 28 - May 2: May 1 is a public holiday, no lectures:
152+
159153

160154
## May 5-9: Deep generative models
161155
- Variational Autoencoders
162156
- Diffusion models
163157
- Reading recommendation: An Introduction to Variational Autoencoders, by Kingma and Welling, see https://arxiv.org/abs/1906.02691
164158
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week14/ipynb/week14.ipynb
165-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay8.pdf
166159

167160
## May 12-16: Deep generative models
168161
- Summarizing discussion of VAEs
169162
- Diffusion models
170163
- Summary of course and discussion of projects
171164
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb
172-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay15.pdf
173165

174-
## May 19-23: Kab only and discussion of projects
166+
## May 19-23: Only and discussion of projects
175167

176168
## Recommended textbooks:
177169

0 commit comments

Comments
 (0)