|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "markdown", |
5 | | - "id": "e00f1a44", |
6 | | - "metadata": {}, |
| 5 | + "id": "2e9df165", |
| 6 | + "metadata": { |
| 7 | + "editable": true |
| 8 | + }, |
7 | 9 | "source": [ |
8 | 10 | "<!-- HTML file automatically generated from DocOnce source (https://github.com/doconce/doconce/)\n", |
9 | 11 | "doconce format html week7.do.txt --no_mako -->\n", |
|
12 | 14 | }, |
13 | 15 | { |
14 | 16 | "cell_type": "markdown", |
15 | | - "id": "0521f5b9", |
16 | | - "metadata": {}, |
| 17 | + "id": "8d2e3ba3", |
| 18 | + "metadata": { |
| 19 | + "editable": true |
| 20 | + }, |
17 | 21 | "source": [ |
18 | 22 | "# Advanced machine learning and data analysis for the physical sciences\n", |
19 | 23 | "**Morten Hjorth-Jensen**, Department of Physics and Center for Computing in Science Education, University of Oslo, Norway\n", |
|
23 | 27 | }, |
24 | 28 | { |
25 | 29 | "cell_type": "markdown", |
26 | | - "id": "794145b7", |
27 | | - "metadata": {}, |
| 30 | + "id": "60bcfd05", |
| 31 | + "metadata": { |
| 32 | + "editable": true |
| 33 | + }, |
28 | 34 | "source": [ |
29 | 35 | "## Plans for the week of March 3-7\n", |
30 | 36 | "\n", |
|
33 | 39 | "2. Mathematics of RNNs\n", |
34 | 40 | "\n", |
35 | 41 | "3. Writing our own codes for RNNs\n", |
36 | | - "<!-- o [Video of lecture](https://youtu.be/VkQGq84ml_0) -->\n", |
37 | | - "<!-- o [Whiteboard notes](https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary27.pdf) -->\n", |
38 | 42 | "\n", |
39 | | - "4. Reading recommendations:\n", |
| 43 | + "4. [Video of lecture](https://youtu.be/MeYh5rGIRBM)\n", |
| 44 | + "\n", |
| 45 | + "5. \"Whiteboard notes\":\"https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch6.pdf\n", |
| 46 | + "\n", |
| 47 | + "6. Reading recommendations:\n", |
40 | 48 | "\n", |
41 | 49 | "a. Goodfellow, Bengio and Courville's chapter 10 from [Deep Learning](https://www.deeplearningbook.org/)\n", |
42 | 50 | "\n", |
|
49 | 57 | }, |
50 | 58 | { |
51 | 59 | "cell_type": "markdown", |
52 | | - "id": "e5e42fd9", |
53 | | - "metadata": {}, |
| 60 | + "id": "0875ad23", |
| 61 | + "metadata": { |
| 62 | + "editable": true |
| 63 | + }, |
54 | 64 | "source": [ |
55 | 65 | "## What is a recurrent NN?\n", |
56 | 66 | "\n", |
|
68 | 78 | }, |
69 | 79 | { |
70 | 80 | "cell_type": "markdown", |
71 | | - "id": "8ea5b91a", |
72 | | - "metadata": {}, |
| 81 | + "id": "4b3bc6ff", |
| 82 | + "metadata": { |
| 83 | + "editable": true |
| 84 | + }, |
73 | 85 | "source": [ |
74 | 86 | "## Why RNNs?\n", |
75 | 87 | "\n", |
|
88 | 100 | }, |
89 | 101 | { |
90 | 102 | "cell_type": "markdown", |
91 | | - "id": "6dadec9c", |
92 | | - "metadata": {}, |
| 103 | + "id": "1a5d8045", |
| 104 | + "metadata": { |
| 105 | + "editable": true |
| 106 | + }, |
93 | 107 | "source": [ |
94 | 108 | "## Basic layout, [Figures from Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch](https://sebastianraschka.com/blog/2022/ml-pytorch-book.html)\n", |
95 | 109 | "\n", |
|
102 | 116 | }, |
103 | 117 | { |
104 | 118 | "cell_type": "markdown", |
105 | | - "id": "f69c94e7", |
106 | | - "metadata": {}, |
| 119 | + "id": "b8620ba2", |
| 120 | + "metadata": { |
| 121 | + "editable": true |
| 122 | + }, |
107 | 123 | "source": [ |
108 | 124 | "## RNNs in more detail\n", |
109 | 125 | "\n", |
|
116 | 132 | }, |
117 | 133 | { |
118 | 134 | "cell_type": "markdown", |
119 | | - "id": "3e66ff38", |
120 | | - "metadata": {}, |
| 135 | + "id": "a4204887", |
| 136 | + "metadata": { |
| 137 | + "editable": true |
| 138 | + }, |
121 | 139 | "source": [ |
122 | 140 | "## RNNs in more detail, part 2\n", |
123 | 141 | "\n", |
|
130 | 148 | }, |
131 | 149 | { |
132 | 150 | "cell_type": "markdown", |
133 | | - "id": "a485dcbf", |
134 | | - "metadata": {}, |
| 151 | + "id": "6303caf2", |
| 152 | + "metadata": { |
| 153 | + "editable": true |
| 154 | + }, |
135 | 155 | "source": [ |
136 | 156 | "## RNNs in more detail, part 3\n", |
137 | 157 | "\n", |
|
144 | 164 | }, |
145 | 165 | { |
146 | 166 | "cell_type": "markdown", |
147 | | - "id": "ea3e2dd7", |
148 | | - "metadata": {}, |
| 167 | + "id": "579a3e09", |
| 168 | + "metadata": { |
| 169 | + "editable": true |
| 170 | + }, |
149 | 171 | "source": [ |
150 | 172 | "## RNNs in more detail, part 4\n", |
151 | 173 | "\n", |
|
158 | 180 | }, |
159 | 181 | { |
160 | 182 | "cell_type": "markdown", |
161 | | - "id": "5eed88f5", |
162 | | - "metadata": {}, |
| 183 | + "id": "8a879d38", |
| 184 | + "metadata": { |
| 185 | + "editable": true |
| 186 | + }, |
163 | 187 | "source": [ |
164 | 188 | "## RNNs in more detail, part 5\n", |
165 | 189 | "\n", |
|
172 | 196 | }, |
173 | 197 | { |
174 | 198 | "cell_type": "markdown", |
175 | | - "id": "f4dd3d82", |
176 | | - "metadata": {}, |
| 199 | + "id": "7930ce08", |
| 200 | + "metadata": { |
| 201 | + "editable": true |
| 202 | + }, |
177 | 203 | "source": [ |
178 | 204 | "## RNNs in more detail, part 6\n", |
179 | 205 | "\n", |
|
186 | 212 | }, |
187 | 213 | { |
188 | 214 | "cell_type": "markdown", |
189 | | - "id": "f2f57990", |
190 | | - "metadata": {}, |
| 215 | + "id": "850d2d15", |
| 216 | + "metadata": { |
| 217 | + "editable": true |
| 218 | + }, |
191 | 219 | "source": [ |
192 | 220 | "## RNNs in more detail, part 7\n", |
193 | 221 | "\n", |
|
200 | 228 | }, |
201 | 229 | { |
202 | 230 | "cell_type": "markdown", |
203 | | - "id": "f86b6161", |
204 | | - "metadata": {}, |
| 231 | + "id": "d5fce222", |
| 232 | + "metadata": { |
| 233 | + "editable": true |
| 234 | + }, |
205 | 235 | "source": [ |
206 | 236 | "## Backpropagation through time\n", |
207 | 237 | "\n", |
|
219 | 249 | }, |
220 | 250 | { |
221 | 251 | "cell_type": "markdown", |
222 | | - "id": "40adbc7d", |
223 | | - "metadata": {}, |
| 252 | + "id": "bdf76896", |
| 253 | + "metadata": { |
| 254 | + "editable": true |
| 255 | + }, |
224 | 256 | "source": [ |
225 | 257 | "## The backward pass is linear\n", |
226 | 258 | "\n", |
|
236 | 268 | }, |
237 | 269 | { |
238 | 270 | "cell_type": "markdown", |
239 | | - "id": "bc9082ba", |
240 | | - "metadata": {}, |
| 271 | + "id": "31005fd6", |
| 272 | + "metadata": { |
| 273 | + "editable": true |
| 274 | + }, |
241 | 275 | "source": [ |
242 | 276 | "## The problem of exploding or vanishing gradients\n", |
243 | 277 | "* What happens to the magnitude of the gradients as we backpropagate through many layers?\n", |
|
259 | 293 | }, |
260 | 294 | { |
261 | 295 | "cell_type": "markdown", |
262 | | - "id": "9f380618", |
263 | | - "metadata": {}, |
| 296 | + "id": "6ee2e70b", |
| 297 | + "metadata": { |
| 298 | + "editable": true |
| 299 | + }, |
264 | 300 | "source": [ |
265 | 301 | "## The mathematics of RNNs, the basic architecture\n", |
266 | 302 | "\n", |
|
269 | 305 | }, |
270 | 306 | { |
271 | 307 | "cell_type": "markdown", |
272 | | - "id": "2b6f4cbd", |
273 | | - "metadata": {}, |
| 308 | + "id": "bd5842f9", |
| 309 | + "metadata": { |
| 310 | + "editable": true |
| 311 | + }, |
274 | 312 | "source": [ |
275 | 313 | "## Four effective ways to learn an RNN and preparing for next week\n", |
276 | | - "1. Long Short Term Memory Make the RNN out of little modules that are designed to remember values for a long time. We discuss this next week.\n", |
| 314 | + "1. Long Short Term Memory Make the RNN out of little modules that are designed to remember values for a long time.\n", |
277 | 315 | "\n", |
278 | 316 | "2. Hessian Free Optimization: Deal with the vanishing gradients problem by using a fancy optimizer that can detect directions with a tiny gradient but even smaller curvature.\n", |
279 | 317 | "\n", |
|
284 | 322 | }, |
285 | 323 | { |
286 | 324 | "cell_type": "markdown", |
287 | | - "id": "ba57c26d", |
288 | | - "metadata": {}, |
| 325 | + "id": "3406a1ad", |
| 326 | + "metadata": { |
| 327 | + "editable": true |
| 328 | + }, |
289 | 329 | "source": [ |
290 | 330 | "## Long Short Term Memory (LSTM)\n", |
291 | 331 | "\n", |
|
305 | 345 | ] |
306 | 346 | } |
307 | 347 | ], |
308 | | - "metadata": { |
309 | | - "kernelspec": { |
310 | | - "display_name": "Python 3 (ipykernel)", |
311 | | - "language": "python", |
312 | | - "name": "python3" |
313 | | - }, |
314 | | - "language_info": { |
315 | | - "codemirror_mode": { |
316 | | - "name": "ipython", |
317 | | - "version": 3 |
318 | | - }, |
319 | | - "file_extension": ".py", |
320 | | - "mimetype": "text/x-python", |
321 | | - "name": "python", |
322 | | - "nbconvert_exporter": "python", |
323 | | - "pygments_lexer": "ipython3", |
324 | | - "version": "3.9.15" |
325 | | - } |
326 | | - }, |
| 348 | + "metadata": {}, |
327 | 349 | "nbformat": 4, |
328 | 350 | "nbformat_minor": 5 |
329 | 351 | } |
0 commit comments