Skip to content

Commit dbb3733

Browse files
committed
update on codes
1 parent 9221ae6 commit dbb3733

File tree

2 files changed

+136
-0
lines changed

2 files changed

+136
-0
lines changed

doc/src/week6/programs/mnist.py

Lines changed: 136 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,136 @@
1+
2+
# import necessary packages
3+
import numpy as np
4+
import matplotlib.pyplot as plt
5+
from sklearn import datasets
6+
7+
8+
# ensure the same random numbers appear every time
9+
np.random.seed(0)
10+
11+
# display images in notebook
12+
13+
plt.rcParams['figure.figsize'] = (12,12)
14+
15+
16+
# download MNIST dataset
17+
digits = datasets.load_digits()
18+
19+
# define inputs and labels
20+
inputs = digits.images
21+
labels = digits.target
22+
23+
# RGB images have a depth of 3
24+
# our images are grayscale so they should have a depth of 1
25+
inputs = inputs[:,:,:,np.newaxis]
26+
27+
print("inputs = (n_inputs, pixel_width, pixel_height, depth) = " + str(inputs.shape))
28+
print("labels = (n_inputs) = " + str(labels.shape))
29+
30+
31+
# choose some random images to display
32+
n_inputs = len(inputs)
33+
indices = np.arange(n_inputs)
34+
random_indices = np.random.choice(indices, size=5)
35+
36+
for i, image in enumerate(digits.images[random_indices]):
37+
plt.subplot(1, 5, i+1)
38+
plt.axis('off')
39+
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
40+
plt.title("Label: %d" % digits.target[random_indices[i]])
41+
plt.show()
42+
43+
from tensorflow.keras import datasets, layers, models
44+
from tensorflow.keras.layers import Input
45+
from tensorflow.keras.models import Sequential #This allows appending layers to existing models
46+
from tensorflow.keras.layers import Dense #This allows defining the characteristics of a particular layer
47+
from tensorflow.keras import optimizers #This allows using whichever optimiser we want (sgd,adam,RMSprop)
48+
from tensorflow.keras import regularizers #This allows using whichever regularizer we want (l1,l2,l1_l2)
49+
from tensorflow.keras.utils import to_categorical #This allows using categorical cross entropy as the cost function
50+
51+
from sklearn.model_selection import train_test_split
52+
53+
# representation of labels
54+
labels = to_categorical(labels)
55+
56+
# split into train and test data
57+
# one-liner from scikit-learn library
58+
train_size = 0.8
59+
test_size = 1 - train_size
60+
X_train, X_test, Y_train, Y_test = train_test_split(inputs, labels, train_size=train_size,
61+
test_size=test_size)
62+
63+
def create_convolutional_neural_network_keras(input_shape, receptive_field,
64+
n_filters, n_neurons_connected, n_categories,
65+
eta, lmbd):
66+
model = Sequential()
67+
model.add(layers.Conv2D(n_filters, (receptive_field, receptive_field), input_shape=input_shape, padding='same',
68+
activation='relu', kernel_regularizer=regularizers.l2(lmbd)))
69+
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
70+
model.add(layers.Flatten())
71+
model.add(layers.Dense(n_neurons_connected, activation='relu', kernel_regularizer=regularizers.l2(lmbd)))
72+
model.add(layers.Dense(n_categories, activation='softmax', kernel_regularizer=regularizers.l2(lmbd)))
73+
74+
sgd = optimizers.SGD(learning_rate=eta)
75+
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
76+
77+
return model
78+
79+
epochs = 100
80+
batch_size = 100
81+
input_shape = X_train.shape[1:4]
82+
receptive_field = 3
83+
n_filters = 10
84+
n_neurons_connected = 50
85+
n_categories = 10
86+
87+
eta_vals = np.logspace(-5, 1, 7)
88+
lmbd_vals = np.logspace(-5, 1, 7)
89+
90+
CNN_keras = np.zeros((len(eta_vals), len(lmbd_vals)), dtype=object)
91+
92+
for i, eta in enumerate(eta_vals):
93+
for j, lmbd in enumerate(lmbd_vals):
94+
CNN = create_convolutional_neural_network_keras(input_shape, receptive_field,
95+
n_filters, n_neurons_connected, n_categories,
96+
eta, lmbd)
97+
CNN.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=0)
98+
scores = CNN.evaluate(X_test, Y_test)
99+
100+
CNN_keras[i][j] = CNN
101+
102+
print("Learning rate = ", eta)
103+
print("Lambda = ", lmbd)
104+
print("Test accuracy: %.3f" % scores[1])
105+
print()
106+
107+
# visual representation of grid search
108+
# uses seaborn heatmap, could probably do this in matplotlib
109+
import seaborn as sns
110+
111+
sns.set()
112+
113+
train_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
114+
test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
115+
116+
for i in range(len(eta_vals)):
117+
for j in range(len(lmbd_vals)):
118+
CNN = CNN_keras[i][j]
119+
120+
train_accuracy[i][j] = CNN.evaluate(X_train, Y_train)[1]
121+
test_accuracy[i][j] = CNN.evaluate(X_test, Y_test)[1]
122+
123+
124+
fig, ax = plt.subplots(figsize = (10, 10))
125+
sns.heatmap(train_accuracy, annot=True, ax=ax, cmap="viridis")
126+
ax.set_title("Training Accuracy")
127+
ax.set_ylabel("$\eta$")
128+
ax.set_xlabel("$\lambda$")
129+
plt.show()
130+
131+
fig, ax = plt.subplots(figsize = (10, 10))
132+
sns.heatmap(test_accuracy, annot=True, ax=ax, cmap="viridis")
133+
ax.set_title("Test Accuracy")
134+
ax.set_ylabel("$\eta$")
135+
ax.set_xlabel("$\lambda$")
136+
plt.show()

0 commit comments

Comments
 (0)