|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torch.optim as optim |
| 4 | +import torch.nn.functional as F |
| 5 | +from torchvision import datasets, transforms |
| 6 | +from torch.utils.data import DataLoader |
| 7 | +import matplotlib.pyplot as plt |
| 8 | +import numpy as np |
| 9 | + |
| 10 | +# Define the VAE |
| 11 | +class VAE(nn.Module): |
| 12 | + def __init__(self, input_dim=784, hidden_dim=400, latent_dim=2): |
| 13 | + super(VAE, self).__init__() |
| 14 | + self.fc1 = nn.Linear(input_dim, hidden_dim) |
| 15 | + self.fc_mu = nn.Linear(hidden_dim, latent_dim) |
| 16 | + self.fc_logvar = nn.Linear(hidden_dim, latent_dim) |
| 17 | + self.fc3 = nn.Linear(latent_dim, hidden_dim) |
| 18 | + self.fc4 = nn.Linear(hidden_dim, input_dim) |
| 19 | + |
| 20 | + def encode(self, x): |
| 21 | + h1 = F.relu(self.fc1(x)) |
| 22 | + return self.fc_mu(h1), self.fc_logvar(h1) |
| 23 | + |
| 24 | + def reparameterize(self, mu, logvar): |
| 25 | + std = torch.exp(0.5 * logvar) |
| 26 | + eps = torch.randn_like(std) |
| 27 | + return mu + eps * std |
| 28 | + |
| 29 | + def decode(self, z): |
| 30 | + h3 = F.relu(self.fc3(z)) |
| 31 | + return torch.sigmoid(self.fc4(h3)) |
| 32 | + |
| 33 | + def forward(self, x): |
| 34 | + mu, logvar = self.encode(x.view(-1, 784)) |
| 35 | + z = self.reparameterize(mu, logvar) |
| 36 | + return self.decode(z), mu, logvar |
| 37 | + |
| 38 | +# Loss function |
| 39 | +def loss_function(recon_x, x, mu, logvar): |
| 40 | + BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum') |
| 41 | + KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) |
| 42 | + return BCE + KLD |
| 43 | + |
| 44 | +# Prepare data |
| 45 | +transform = transforms.ToTensor() |
| 46 | +train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform) |
| 47 | +test_dataset = datasets.MNIST('./data', train=False, download=True, transform=transform) |
| 48 | +train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True) |
| 49 | +test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False) |
| 50 | + |
| 51 | +# Set device |
| 52 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 53 | +model = VAE().to(device) |
| 54 | +optimizer = optim.Adam(model.parameters(), lr=1e-3) |
| 55 | + |
| 56 | +# Training function |
| 57 | +def train(epoch): |
| 58 | + model.train() |
| 59 | + train_loss = 0 |
| 60 | + for batch_idx, (data, _) in enumerate(train_loader): |
| 61 | + data = data.to(device) |
| 62 | + optimizer.zero_grad() |
| 63 | + recon_batch, mu, logvar = model(data) |
| 64 | + loss = loss_function(recon_batch, data, mu, logvar) |
| 65 | + loss.backward() |
| 66 | + train_loss += loss.item() |
| 67 | + optimizer.step() |
| 68 | + print(f"Epoch {epoch}: Avg Loss: {train_loss / len(train_loader.dataset):.4f}") |
| 69 | + |
| 70 | +# Run training |
| 71 | +for epoch in range(1, 11): |
| 72 | + train(epoch) |
| 73 | + |
| 74 | +# Reconstruction Visualization |
| 75 | +model.eval() |
| 76 | +with torch.no_grad(): |
| 77 | + data, _ = next(iter(test_loader)) |
| 78 | + data = data.to(device) |
| 79 | + recon_batch, _, _ = model(data) |
| 80 | + |
| 81 | + n = 8 |
| 82 | + comparison = torch.cat([data[:n], recon_batch.view(-1, 1, 28, 28)[:n]]) |
| 83 | + comparison = comparison.cpu() |
| 84 | + |
| 85 | + plt.figure(figsize=(12, 3)) |
| 86 | + for i in range(n): |
| 87 | + plt.subplot(2, n, i + 1) |
| 88 | + plt.imshow(comparison[i][0], cmap='gray') |
| 89 | + plt.axis('off') |
| 90 | + plt.subplot(2, n, i + 1 + n) |
| 91 | + plt.imshow(comparison[i + n][0], cmap='gray') |
| 92 | + plt.axis('off') |
| 93 | + plt.suptitle("Top: Original | Bottom: Reconstructed") |
| 94 | + plt.show() |
| 95 | + |
| 96 | +# Latent Space Visualization |
| 97 | +model.eval() |
| 98 | +z_list = [] |
| 99 | +label_list = [] |
| 100 | + |
| 101 | +with torch.no_grad(): |
| 102 | + for data, labels in test_loader: |
| 103 | + data = data.to(device) |
| 104 | + mu, _ = model.encode(data.view(-1, 784)) |
| 105 | + z_list.append(mu.cpu()) |
| 106 | + label_list.append(labels) |
| 107 | + |
| 108 | +z = torch.cat(z_list).numpy() |
| 109 | +labels = torch.cat(label_list).numpy() |
| 110 | + |
| 111 | +plt.figure(figsize=(8, 6)) |
| 112 | +scatter = plt.scatter(z[:, 0], z[:, 1], c=labels, cmap='tab10', alpha=0.7, s=10) |
| 113 | +plt.colorbar(scatter, ticks=range(10)) |
| 114 | +plt.title("2D Latent Space of MNIST") |
| 115 | +plt.xlabel("z[0]") |
| 116 | +plt.ylabel("z[1]") |
| 117 | +plt.grid(True) |
| 118 | +plt.show() |
0 commit comments