|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "markdown", |
5 | | - "id": "b234bc94", |
6 | | - "metadata": {}, |
| 5 | + "id": "e00f1a44", |
| 6 | + "metadata": { |
| 7 | + "editable": true |
| 8 | + }, |
7 | 9 | "source": [ |
8 | 10 | "<!-- HTML file automatically generated from DocOnce source (https://github.com/doconce/doconce/)\n", |
9 | 11 | "doconce format html week7.do.txt --no_mako -->\n", |
|
12 | 14 | }, |
13 | 15 | { |
14 | 16 | "cell_type": "markdown", |
15 | | - "id": "498a8311", |
16 | | - "metadata": {}, |
| 17 | + "id": "0521f5b9", |
| 18 | + "metadata": { |
| 19 | + "editable": true |
| 20 | + }, |
17 | 21 | "source": [ |
18 | 22 | "# Advanced machine learning and data analysis for the physical sciences\n", |
19 | 23 | "**Morten Hjorth-Jensen**, Department of Physics and Center for Computing in Science Education, University of Oslo, Norway\n", |
|
23 | 27 | }, |
24 | 28 | { |
25 | 29 | "cell_type": "markdown", |
26 | | - "id": "3a476efd", |
27 | | - "metadata": {}, |
| 30 | + "id": "794145b7", |
| 31 | + "metadata": { |
| 32 | + "editable": true |
| 33 | + }, |
28 | 34 | "source": [ |
29 | 35 | "## Plans for the week of March 3-7\n", |
30 | 36 | "\n", |
|
49 | 55 | }, |
50 | 56 | { |
51 | 57 | "cell_type": "markdown", |
52 | | - "id": "1e075e8d", |
53 | | - "metadata": {}, |
| 58 | + "id": "e5e42fd9", |
| 59 | + "metadata": { |
| 60 | + "editable": true |
| 61 | + }, |
54 | 62 | "source": [ |
55 | 63 | "## What is a recurrent NN?\n", |
56 | 64 | "\n", |
|
68 | 76 | }, |
69 | 77 | { |
70 | 78 | "cell_type": "markdown", |
71 | | - "id": "bed88d90", |
72 | | - "metadata": {}, |
| 79 | + "id": "8ea5b91a", |
| 80 | + "metadata": { |
| 81 | + "editable": true |
| 82 | + }, |
73 | 83 | "source": [ |
74 | 84 | "## Why RNNs?\n", |
75 | 85 | "\n", |
|
88 | 98 | }, |
89 | 99 | { |
90 | 100 | "cell_type": "markdown", |
91 | | - "id": "91ce0ede", |
92 | | - "metadata": {}, |
| 101 | + "id": "6dadec9c", |
| 102 | + "metadata": { |
| 103 | + "editable": true |
| 104 | + }, |
93 | 105 | "source": [ |
94 | 106 | "## Basic layout, [Figures from Sebastian Rashcka et al, Machine learning with Sickit-Learn and PyTorch](https://sebastianraschka.com/blog/2022/ml-pytorch-book.html)\n", |
95 | 107 | "\n", |
|
102 | 114 | }, |
103 | 115 | { |
104 | 116 | "cell_type": "markdown", |
105 | | - "id": "1043ac0c", |
106 | | - "metadata": {}, |
| 117 | + "id": "f69c94e7", |
| 118 | + "metadata": { |
| 119 | + "editable": true |
| 120 | + }, |
107 | 121 | "source": [ |
108 | 122 | "## RNNs in more detail\n", |
109 | 123 | "\n", |
|
116 | 130 | }, |
117 | 131 | { |
118 | 132 | "cell_type": "markdown", |
119 | | - "id": "8404606d", |
120 | | - "metadata": {}, |
| 133 | + "id": "3e66ff38", |
| 134 | + "metadata": { |
| 135 | + "editable": true |
| 136 | + }, |
121 | 137 | "source": [ |
122 | 138 | "## RNNs in more detail, part 2\n", |
123 | 139 | "\n", |
|
130 | 146 | }, |
131 | 147 | { |
132 | 148 | "cell_type": "markdown", |
133 | | - "id": "23676fa0", |
134 | | - "metadata": {}, |
| 149 | + "id": "a485dcbf", |
| 150 | + "metadata": { |
| 151 | + "editable": true |
| 152 | + }, |
135 | 153 | "source": [ |
136 | 154 | "## RNNs in more detail, part 3\n", |
137 | 155 | "\n", |
|
144 | 162 | }, |
145 | 163 | { |
146 | 164 | "cell_type": "markdown", |
147 | | - "id": "f42b4f52", |
148 | | - "metadata": {}, |
| 165 | + "id": "ea3e2dd7", |
| 166 | + "metadata": { |
| 167 | + "editable": true |
| 168 | + }, |
149 | 169 | "source": [ |
150 | 170 | "## RNNs in more detail, part 4\n", |
151 | 171 | "\n", |
|
158 | 178 | }, |
159 | 179 | { |
160 | 180 | "cell_type": "markdown", |
161 | | - "id": "d0ccb5c5", |
162 | | - "metadata": {}, |
| 181 | + "id": "5eed88f5", |
| 182 | + "metadata": { |
| 183 | + "editable": true |
| 184 | + }, |
163 | 185 | "source": [ |
164 | 186 | "## RNNs in more detail, part 5\n", |
165 | 187 | "\n", |
|
172 | 194 | }, |
173 | 195 | { |
174 | 196 | "cell_type": "markdown", |
175 | | - "id": "38d64d97", |
176 | | - "metadata": {}, |
| 197 | + "id": "f4dd3d82", |
| 198 | + "metadata": { |
| 199 | + "editable": true |
| 200 | + }, |
177 | 201 | "source": [ |
178 | 202 | "## RNNs in more detail, part 6\n", |
179 | 203 | "\n", |
|
186 | 210 | }, |
187 | 211 | { |
188 | 212 | "cell_type": "markdown", |
189 | | - "id": "5edcb189", |
190 | | - "metadata": {}, |
| 213 | + "id": "f2f57990", |
| 214 | + "metadata": { |
| 215 | + "editable": true |
| 216 | + }, |
191 | 217 | "source": [ |
192 | 218 | "## RNNs in more detail, part 7\n", |
193 | 219 | "\n", |
|
200 | 226 | }, |
201 | 227 | { |
202 | 228 | "cell_type": "markdown", |
203 | | - "id": "0afc9ec6", |
204 | | - "metadata": {}, |
| 229 | + "id": "f86b6161", |
| 230 | + "metadata": { |
| 231 | + "editable": true |
| 232 | + }, |
205 | 233 | "source": [ |
206 | 234 | "## Backpropagation through time\n", |
207 | 235 | "\n", |
|
219 | 247 | }, |
220 | 248 | { |
221 | 249 | "cell_type": "markdown", |
222 | | - "id": "d35cf606", |
223 | | - "metadata": {}, |
| 250 | + "id": "40adbc7d", |
| 251 | + "metadata": { |
| 252 | + "editable": true |
| 253 | + }, |
224 | 254 | "source": [ |
225 | 255 | "## The backward pass is linear\n", |
226 | 256 | "\n", |
|
236 | 266 | }, |
237 | 267 | { |
238 | 268 | "cell_type": "markdown", |
239 | | - "id": "3d010953", |
240 | | - "metadata": {}, |
| 269 | + "id": "bc9082ba", |
| 270 | + "metadata": { |
| 271 | + "editable": true |
| 272 | + }, |
241 | 273 | "source": [ |
242 | 274 | "## The problem of exploding or vanishing gradients\n", |
243 | 275 | "* What happens to the magnitude of the gradients as we backpropagate through many layers?\n", |
|
257 | 289 | "RNNs have difficulty dealing with long-range dependencies." |
258 | 290 | ] |
259 | 291 | }, |
260 | | - { |
261 | | - "cell_type": "code", |
262 | | - "execution_count": 4, |
263 | | - "id": "a44f39f1", |
264 | | - "metadata": {}, |
265 | | - "outputs": [ |
266 | | - { |
267 | | - "ename": "NameError", |
268 | | - "evalue": "name 'rnnmath' is not defined", |
269 | | - "output_type": "error", |
270 | | - "traceback": [ |
271 | | - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
272 | | - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
273 | | - "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mrnnmath\u001b[49m\u001b[38;5;241m.\u001b[39mipynb\n", |
274 | | - "\u001b[0;31mNameError\u001b[0m: name 'rnnmath' is not defined" |
275 | | - ] |
276 | | - } |
277 | | - ], |
278 | | - "source": [ |
279 | | - "rnnmath.ipynb" |
280 | | - ] |
281 | | - }, |
282 | 292 | { |
283 | 293 | "cell_type": "markdown", |
284 | | - "id": "474791b6", |
285 | | - "metadata": {}, |
| 294 | + "id": "9f380618", |
| 295 | + "metadata": { |
| 296 | + "editable": true |
| 297 | + }, |
286 | 298 | "source": [ |
287 | 299 | "## The mathematics of RNNs, the basic architecture\n", |
288 | 300 | "\n", |
|
291 | 303 | }, |
292 | 304 | { |
293 | 305 | "cell_type": "markdown", |
294 | | - "id": "476206c8", |
295 | | - "metadata": {}, |
| 306 | + "id": "2b6f4cbd", |
| 307 | + "metadata": { |
| 308 | + "editable": true |
| 309 | + }, |
296 | 310 | "source": [ |
297 | 311 | "## Four effective ways to learn an RNN and preparing for next week\n", |
298 | 312 | "1. Long Short Term Memory Make the RNN out of little modules that are designed to remember values for a long time.\n", |
|
306 | 320 | }, |
307 | 321 | { |
308 | 322 | "cell_type": "markdown", |
309 | | - "id": "28845405", |
310 | | - "metadata": {}, |
| 323 | + "id": "ba57c26d", |
| 324 | + "metadata": { |
| 325 | + "editable": true |
| 326 | + }, |
311 | 327 | "source": [ |
312 | 328 | "## Long Short Term Memory (LSTM)\n", |
313 | 329 | "\n", |
|
327 | 343 | ] |
328 | 344 | } |
329 | 345 | ], |
330 | | - "metadata": { |
331 | | - "kernelspec": { |
332 | | - "display_name": "Python 3 (ipykernel)", |
333 | | - "language": "python", |
334 | | - "name": "python3" |
335 | | - }, |
336 | | - "language_info": { |
337 | | - "codemirror_mode": { |
338 | | - "name": "ipython", |
339 | | - "version": 3 |
340 | | - }, |
341 | | - "file_extension": ".py", |
342 | | - "mimetype": "text/x-python", |
343 | | - "name": "python", |
344 | | - "nbconvert_exporter": "python", |
345 | | - "pygments_lexer": "ipython3", |
346 | | - "version": "3.9.15" |
347 | | - } |
348 | | - }, |
| 346 | + "metadata": {}, |
349 | 347 | "nbformat": 4, |
350 | 348 | "nbformat_minor": 5 |
351 | 349 | } |
0 commit comments