@@ -12,8 +12,8 @@ variational autoencoders, generalized adversarial networks, diffusion methods an
1212![ alt text] ( https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/images/image001.jpg?raw=true )
1313
1414
15- ### Time: Each Tuesday at 1015am-12pm CET (The sessions will be recorded), first time January 16, 2024
16- ### Lab session: Each Thursday at 215pm-4pm CET, room FØ397
15+ ### Time: Each Thursday at 1215pm-2pm CET room FØ434, (The sessions will be recorded), first time January 23, 2025
16+ ### Lab session: Each Thursday at 215pm-3pm CET, room FØ434
1717
1818FYS5429 zoom link
1919https://msu.zoom.us/j/6424997467?pwd=TEhTL0lmTmpGbHlnejZQa1pCdzRKdz09
@@ -24,144 +24,125 @@ Passcode: FYS4411
2424
2525Furthermore, all teaching material is available from this GitHub link.
2626
27- ## January 15-19 : Presentation of couse, review of neural networks and deep Learning and discussion of possible projects
27+ ## January 20-24 : Presentation of couse, review of neural networks and deep Learning and discussion of possible projects
2828
2929- Presentation of course and overview
3030- Discussion of possible projects
3131- Deep learning, neural networks, basic equations
32- - Recommended reading Goodfellow et al chapters 6 and 7
33- - Video of first lecture at https://youtu.be/dP8g_tjQ_9c
3432- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week1/ipynb/week1.ipynb
33+ - Recommended reading Goodfellow et al chapters 6 and 7 and Raschka chapter 11
3534
36- ## January 22-26
37- - Mathematics of deep learning, basics of neural networks
35+ ## January 27-31
36+ - Mathematics of deep learning, basics of neural networks and writing a neural network code
3837- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week2/ipynb/week2.ipynb
3938- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka et al chapter 11. For Pytorch see Raschka et al chapter 12.
40- - Link to video of lecture at https://youtu.be/SEYuOoMws_k
41- - Link to whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesJanuary23.pdf
4239
43- ## January 29-February 2
44- - Mathematics of deep learning
45- - Discussion of first project
46- - Video of lecture at https://youtu.be/OUTFo0oJadU
40+ ## February 3-7
41+ - From neural networks to convolutional neural networks
4742- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week3/ipynb/week3.ipynb
4843- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka et al chapter 11. For Pytorch see Raschka et al chapter 12.
4944
50- ## February 5-9
51- - Mathematics of deep learning
45+ ## February 10-14
46+ - Mathematics of convolutional neural networks
5247- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week4/ipynb/week4.ipynb
5348- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
54- - Video of lecture at https://youtu.be/b9ni34-sMRI
55- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary6.pdf
49+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary6.pdf
5650
5751
58- ## February 12-16
59- - Convolutional neural networks (CNNs), basic mathematics of CNNs
60- - Video of lecture at https://youtu.be/iNNVYdFw8CI
61- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary13.pdf
52+ ## February 17-21
53+ - Mathematics of CNNs and discussion of codes
54+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary13.pdf
6255- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week5/ipynb/week5.ipynb
6356- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
6457
65- ## February 19-23
66- - Mathematics of CNNs and discussion of codes
58+ ## February 24-28
59+ - From CNNs to recurrent neural networks
6760- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week6/ipynb/week6.ipynb
68- - Recommended reading Goodfellow et al chapters 9 and Raschka et al chapter 14
69- - Video of lecture at https://youtu.be/jqgSED0tF70
70- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary20.pdf
61+ - Recommended reading Goodfellow et al chapters 9 and 10 and Raschka et al chapters 14 and 15
62+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary20.pdf
7163
72- ## February 26- March 1
73- - Repetion of CNNs and discussion codes
74- - Recurrent neural networks, basic mathematics and structure
64+ ## March 3-7
65+ - Recurrent neural networks, mathematics and codes
66+ - Long-Short-Term memory and applications to differential equations
7567- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week7/ipynb/week7.ipynb
76- - Video of lecture at https://youtu.be/VkQGq84ml_0
77- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary27.pdf
68+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary27.pdf
7869- Recommended reading Goodfellow et al chapters 10 and Raschka et al chapter 15
7970
8071
81- ## March 4-8
82- - Structure of RNNs
83- - Long-Short-Term memory and applications to differential equations
84- - Start discussing autoencoders
72+ ## March 10-14
73+ - More on structure of RNNs
74+ - Autoencoders and PCA
8575- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week8/ipynb/week8.ipynb
8676- Recommended reading Goodfellow et al chapter 14 for Autoenconders
87- - Whiteboard notes https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024 /NotesMarch5.pdf
77+ - Whiteboard notes https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025 /NotesMarch5.pdf
8878
89- ## March 11-15 : Autoencoders
90- - Autoencoders and discussions of codes and links with PCA
79+ ## March 17-21 : Autoencoders
80+ - Autoencoders and discussions of codes
9181- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week9/ipynb/week9.ipynb
9282- Reading recommendation: Goodfellow et al chapter 14
93- - Video of Lecture at https://youtu.be/PU_8riCscQg
94- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesMarch12.pdf
83+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch12.pdf
9584
9685
97- ## March 18-22 : Autoencoders and start discussion of generative models
86+ ## March 24-28 : Autoencoders and start discussion of generative models
9887- Autoencoders and links with Principal Component Analysis. Discussion of AE implementations
9988- Summary of deep learning methods and links with generative models and discussion of possible paths for project 2
10089- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week10/ipynb/week10.ipynb
10190- Reading recommendation: Goodfellow et al chapters, 14 and 16
102- - Video of lecture at https://youtu.be/8s0QC1MvdYg
103- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesMarch19.pdf
91+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch19.pdf
10492
105- ## April 1-5 : Deep generative models
93+ ## March 31-April 4 : Deep generative models
10694- Monte Carlo methods and structured probabilistic models for deep learning
10795- Partition function and Boltzmann machines
10896- Boltzmann machines
10997- Reading recommendation: Goodfellow et al chapters 16, 17 and 18
11098- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week11/ipynb/week11.ipynb
111- - Video of lecture at https://youtu.be/zIG0iEGN05c
112- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril2.pdf
99+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril2.pdf
113100
114101
115- ## April 8-12 : Deep generative models
102+ ## April 7-11 : Deep generative models
116103- Restricted Boltzmann machines, reminder from last week
117104- Reminder on Markov Chain Monte Carlo and Gibbs sampling
118105- Discussions of various Boltzmann machines
119106- Implementation of Boltzmann machines using TensorFlow and Pytorch
120107- Reading recommendation: Goodfellow et al chapters 18.1-18.2, 20.1-20-7; To create Boltzmann machine using Keras, see Babcock and Bali chapter 4
121108- See also Foster, chapter 7 on energy-based models
122- - Video of lecture at https://youtu.be/hEjcK0ZkuAA
123- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril9.pdf
109+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril9.pdf
124110
125111
126- ## April 15-19 : Deep generative models
112+ ## April 21-25 : Deep generative models
127113- Energy-based models and Langevin sampling
128114- Variational autoencoders
129115- Reading recommendation: Goodfellow et al chapter 20.10-20.14
130116- See also Foster, chapter 7 on energy-based models
131117- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week13/ipynb/week13.ipynb
132- - Video of lecture at https://youtu.be/rw-NBN293o4
133- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril16.pdf
118+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril16.pdf
134119
135- ## April 22-26 : Deep generative models
120+ ## May 5-9 : Deep generative models
136121- Variational Autoencoders
137122- Reading recommendation: An Introduction to Variational Autoencoders, by Kingma and Welling, see https://arxiv.org/abs/1906.02691
138123- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week14/ipynb/week14.ipynb
139- - Video of lecture at https://youtu.be/tkOweMYCMVg
140- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril23.pdf
124+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril23.pdf
141125
142- ## April 29- May 3 : Deep generative models
126+ ## May 12-16 : Deep generative models
143127- Summarizing discussion of VAEs
144- - Generative Adversarial Networks (GANs)
128+ - Diffusion models
145129- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb
146- - Video of lecture at https://youtu.be/Cg8n9aWwHuU
147- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril30.pdf
130+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril30.pdf
148131
149132
150- ## May 6-10: Deep generative models
151- - Generative Adversarial Networks (GANs)
133+ ## May 19-23: Deep generative models
152134- Diffusion models
135+ - Generative Adversarial Networks (GANs)
153136- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week16.ipynb
154- - Video of lecture at https://youtu.be/lYgKGCQRUhQ
155- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesMay7.pdf
137+ - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay7.pdf
156138
157139
158- ## May 13-17: Deep generative models
140+ ## May 12-16: Deep generative models
141+ - Generative Adversarial Networks (GANs)
159142- Summary of course and discussion of projects
160143- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week17.ipynb
161- - Video of lecture at https://youtu.be/HWW3vnR4RZE
162144
163- ## May 20-31: Lab only and work on project 2 each Thursday
164- - Only project work May 20 to end of May, Thursdays 215pm-4pm, room FØ397
145+
165146
166147## Recommended textbooks:
167148
0 commit comments