Skip to content

Commit 1cbccf8

Browse files
committed
Update README.md
1 parent 8c46688 commit 1cbccf8

File tree

1 file changed

+48
-67
lines changed

1 file changed

+48
-67
lines changed

README.md

Lines changed: 48 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -12,8 +12,8 @@ variational autoencoders, generalized adversarial networks, diffusion methods an
1212
![alt text](https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/images/image001.jpg?raw=true)
1313

1414

15-
### Time: Each Tuesday at 1015am-12pm CET (The sessions will be recorded), first time January 16, 2024
16-
### Lab session: Each Thursday at 215pm-4pm CET, room FØ397
15+
### Time: Each Thursday at 1215pm-2pm CET room FØ434, (The sessions will be recorded), first time January 23, 2025
16+
### Lab session: Each Thursday at 215pm-3pm CET, room FØ434
1717

1818
FYS5429 zoom link
1919
https://msu.zoom.us/j/6424997467?pwd=TEhTL0lmTmpGbHlnejZQa1pCdzRKdz09
@@ -24,144 +24,125 @@ Passcode: FYS4411
2424

2525
Furthermore, all teaching material is available from this GitHub link.
2626

27-
## January 15-19: Presentation of couse, review of neural networks and deep Learning and discussion of possible projects
27+
## January 20-24: Presentation of couse, review of neural networks and deep Learning and discussion of possible projects
2828

2929
- Presentation of course and overview
3030
- Discussion of possible projects
3131
- Deep learning, neural networks, basic equations
32-
- Recommended reading Goodfellow et al chapters 6 and 7
33-
- Video of first lecture at https://youtu.be/dP8g_tjQ_9c
3432
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week1/ipynb/week1.ipynb
33+
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka chapter 11
3534

36-
## January 22-26
37-
- Mathematics of deep learning, basics of neural networks
35+
## January 27-31
36+
- Mathematics of deep learning, basics of neural networks and writing a neural network code
3837
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week2/ipynb/week2.ipynb
3938
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka et al chapter 11. For Pytorch see Raschka et al chapter 12.
40-
- Link to video of lecture at https://youtu.be/SEYuOoMws_k
41-
- Link to whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesJanuary23.pdf
4239

43-
## January 29-February 2
44-
- Mathematics of deep learning
45-
- Discussion of first project
46-
- Video of lecture at https://youtu.be/OUTFo0oJadU
40+
## February 3-7
41+
- From neural networks to convolutional neural networks
4742
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week3/ipynb/week3.ipynb
4843
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka et al chapter 11. For Pytorch see Raschka et al chapter 12.
4944

50-
## February 5-9
51-
- Mathematics of deep learning
45+
## February 10-14
46+
- Mathematics of convolutional neural networks
5247
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week4/ipynb/week4.ipynb
5348
- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
54-
- Video of lecture at https://youtu.be/b9ni34-sMRI
55-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary6.pdf
49+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary6.pdf
5650

5751

58-
## February 12-16
59-
- Convolutional neural networks (CNNs), basic mathematics of CNNs
60-
- Video of lecture at https://youtu.be/iNNVYdFw8CI
61-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary13.pdf
52+
## February 17-21
53+
- Mathematics of CNNs and discussion of codes
54+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary13.pdf
6255
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week5/ipynb/week5.ipynb
6356
- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
6457

65-
## February 19-23
66-
- Mathematics of CNNs and discussion of codes
58+
## February 24-28
59+
- From CNNs to recurrent neural networks
6760
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week6/ipynb/week6.ipynb
68-
- Recommended reading Goodfellow et al chapters 9 and Raschka et al chapter 14
69-
- Video of lecture at https://youtu.be/jqgSED0tF70
70-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary20.pdf
61+
- Recommended reading Goodfellow et al chapters 9 and 10 and Raschka et al chapters 14 and 15
62+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary20.pdf
7163

72-
## February 26-March 1
73-
- Repetion of CNNs and discussion codes
74-
- Recurrent neural networks, basic mathematics and structure
64+
## March 3-7
65+
- Recurrent neural networks, mathematics and codes
66+
- Long-Short-Term memory and applications to differential equations
7567
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week7/ipynb/week7.ipynb
76-
- Video of lecture at https://youtu.be/VkQGq84ml_0
77-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesFebruary27.pdf
68+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary27.pdf
7869
- Recommended reading Goodfellow et al chapters 10 and Raschka et al chapter 15
7970

8071

81-
## March 4-8
82-
- Structure of RNNs
83-
- Long-Short-Term memory and applications to differential equations
84-
- Start discussing autoencoders
72+
## March 10-14
73+
- More on structure of RNNs
74+
- Autoencoders and PCA
8575
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week8/ipynb/week8.ipynb
8676
- Recommended reading Goodfellow et al chapter 14 for Autoenconders
87-
- Whiteboard notes https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesMarch5.pdf
77+
- Whiteboard notes https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch5.pdf
8878

89-
## March 11-15: Autoencoders
90-
- Autoencoders and discussions of codes and links with PCA
79+
## March 17-21: Autoencoders
80+
- Autoencoders and discussions of codes
9181
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week9/ipynb/week9.ipynb
9282
- Reading recommendation: Goodfellow et al chapter 14
93-
- Video of Lecture at https://youtu.be/PU_8riCscQg
94-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesMarch12.pdf
83+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch12.pdf
9584

9685

97-
## March 18-22: Autoencoders and start discussion of generative models
86+
## March 24-28: Autoencoders and start discussion of generative models
9887
- Autoencoders and links with Principal Component Analysis. Discussion of AE implementations
9988
- Summary of deep learning methods and links with generative models and discussion of possible paths for project 2
10089
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week10/ipynb/week10.ipynb
10190
- Reading recommendation: Goodfellow et al chapters, 14 and 16
102-
- Video of lecture at https://youtu.be/8s0QC1MvdYg
103-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesMarch19.pdf
91+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch19.pdf
10492

105-
## April 1-5: Deep generative models
93+
## March 31-April 4: Deep generative models
10694
- Monte Carlo methods and structured probabilistic models for deep learning
10795
- Partition function and Boltzmann machines
10896
- Boltzmann machines
10997
- Reading recommendation: Goodfellow et al chapters 16, 17 and 18
11098
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week11/ipynb/week11.ipynb
111-
- Video of lecture at https://youtu.be/zIG0iEGN05c
112-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril2.pdf
99+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril2.pdf
113100

114101

115-
## April 8-12: Deep generative models
102+
## April 7-11: Deep generative models
116103
- Restricted Boltzmann machines, reminder from last week
117104
- Reminder on Markov Chain Monte Carlo and Gibbs sampling
118105
- Discussions of various Boltzmann machines
119106
- Implementation of Boltzmann machines using TensorFlow and Pytorch
120107
- Reading recommendation: Goodfellow et al chapters 18.1-18.2, 20.1-20-7; To create Boltzmann machine using Keras, see Babcock and Bali chapter 4
121108
- See also Foster, chapter 7 on energy-based models
122-
- Video of lecture at https://youtu.be/hEjcK0ZkuAA
123-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril9.pdf
109+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril9.pdf
124110

125111

126-
## April 15-19: Deep generative models
112+
## April 21-25: Deep generative models
127113
- Energy-based models and Langevin sampling
128114
- Variational autoencoders
129115
- Reading recommendation: Goodfellow et al chapter 20.10-20.14
130116
- See also Foster, chapter 7 on energy-based models
131117
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week13/ipynb/week13.ipynb
132-
- Video of lecture at https://youtu.be/rw-NBN293o4
133-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril16.pdf
118+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril16.pdf
134119

135-
## April 22-26: Deep generative models
120+
## May 5-9: Deep generative models
136121
- Variational Autoencoders
137122
- Reading recommendation: An Introduction to Variational Autoencoders, by Kingma and Welling, see https://arxiv.org/abs/1906.02691
138123
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week14/ipynb/week14.ipynb
139-
- Video of lecture at https://youtu.be/tkOweMYCMVg
140-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril23.pdf
124+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril23.pdf
141125

142-
## April 29-May 3: Deep generative models
126+
## May 12-16: Deep generative models
143127
- Summarizing discussion of VAEs
144-
- Generative Adversarial Networks (GANs)
128+
- Diffusion models
145129
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb
146-
- Video of lecture at https://youtu.be/Cg8n9aWwHuU
147-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril30.pdf
130+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril30.pdf
148131

149132

150-
## May 6-10: Deep generative models
151-
- Generative Adversarial Networks (GANs)
133+
## May 19-23: Deep generative models
152134
- Diffusion models
135+
- Generative Adversarial Networks (GANs)
153136
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week16.ipynb
154-
- Video of lecture at https://youtu.be/lYgKGCQRUhQ
155-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesMay7.pdf
137+
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay7.pdf
156138

157139

158-
## May 13-17: Deep generative models
140+
## May 12-16: Deep generative models
141+
- Generative Adversarial Networks (GANs)
159142
- Summary of course and discussion of projects
160143
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week17.ipynb
161-
- Video of lecture at https://youtu.be/HWW3vnR4RZE
162144

163-
## May 20-31: Lab only and work on project 2 each Thursday
164-
- Only project work May 20 to end of May, Thursdays 215pm-4pm, room FØ397
145+
165146

166147
## Recommended textbooks:
167148

0 commit comments

Comments
 (0)