Skip to content

Commit e40bc68

Browse files
authored
Update index.html
Fancying
1 parent 8d3a4a9 commit e40bc68

File tree

1 file changed

+43
-43
lines changed

1 file changed

+43
-43
lines changed

index.html

Lines changed: 43 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -205,7 +205,7 @@
205205
},
206206
"dateCreated": "2019-01-11",
207207
"datePublished": "2020-01-11",
208-
"dateModified": "2025-12-04",
208+
"dateModified": "2025-12-05",
209209
"description": "Introducing the best-established and most accurate framework to calculate area and volume.",
210210
"disambiguatingDescription": "Introducing exact, empirically grounded and logically consistent formulas over the flawed conventional approximations.",
211211
"headline": "Introducing the Core Geometric System ™",
@@ -575,13 +575,13 @@ <h4 style="margin:7px">Algebraic Manipulation</h4>
575575
<br>
576576
<section id="math">
577577
<details>
578-
<summary><h2 style="margin:7px">Basic mathematics</h2>
578+
<summary><h2 style="margin:7px">Basic Mathematics</h2>
579579
</summary>
580580
<br>
581581
<br>
582582
<section>
583583
<details>
584-
<summary><h3 style="margin:7px">1. Numbers and numeric systems</h3></summary>
584+
<summary><h3 style="margin:7px">1. Numbers and Numeric Systems</h3></summary>
585585
<br>
586586
<br>
587587
<section id="numbers"><h3 style="margin:12px">Numbers</h3>
@@ -626,7 +626,7 @@ <h4 style="margin:7px">Algebraic Manipulation</h4>
626626
<br>
627627
<br>
628628
<section id="numeric_systems">
629-
<h3 style="margin:12px">Numeric systems</h3>
629+
<h3 style="margin:12px">Numeric Systems</h3>
630630
<br>
631631
<br>
632632
<p style="margin:12px">Example #1 - The year 2025 in the decimal system with Arab numerals</p>
@@ -737,11 +737,11 @@ <h3 style="margin:12px">Numeric systems</h3>
737737
<br>
738738
<section id="operations">
739739
<details>
740-
<summary><h3 style="margin:7px">2. Mathematical operations</h3></summary>
740+
<summary><h3 style="margin:7px">2. Mathematical Operations</h3></summary>
741741
<br>
742742
<br>
743743
<section id="equity">
744-
<h4 style="margin:12px">= The equity symbol</h4>
744+
<h4 style="margin:12px">= The Equation Symbol</h4>
745745
<br>
746746
<br>
747747
<p style="margin:12px">The numbers or expressions of one side equal in value to the other side.
@@ -899,11 +899,11 @@ <h4 style="margin:12px">➗ Division</h4>
899899
<br>
900900
<br>
901901
<section>
902-
<h3 style="margin:12px">Operations with fractions</h3>
902+
<h3 style="margin:12px">Operations with Fractions</h3>
903903
<br>
904904
<br>
905905
<section>
906-
<h4 style="margin:12px">➕ Adding fractions</h4>
906+
<h4 style="margin:12px">➕ Adding Fractions</h4>
907907
<br>
908908
<br>
909909
<p style="margin:12px">Adding the counters if the denominators are the same.
@@ -933,7 +933,7 @@ <h4 style="margin:12px">➕ Adding fractions</h4>
933933
<br>
934934
<br>
935935
<section>
936-
<h4 style="margin:12px">➖ Subtracting fractions</h4>
936+
<h4 style="margin:12px">➖ Subtracting Fractions</h4>
937937
<br>
938938
<br>
939939
<p style="margin:12px">Subtracting the counters if the denominators are the same.
@@ -963,7 +963,7 @@ <h4 style="margin:12px">➖ Subtracting fractions</h4>
963963
<br>
964964
<br>
965965
<section>
966-
<h4 style="margin:12px">✖️ Multiplying fractions</h4>
966+
<h4 style="margin:12px">✖️ Multiplying Fractions</h4>
967967
<br>
968968
<br>
969969
<p style="margin:12px">Multiplying counter by counter and denominator by denominator.
@@ -991,7 +991,7 @@ <h4 style="margin:12px">✖️ Multiplying fractions</h4>
991991
<br>
992992
<br>
993993
<section>
994-
<h4 style="margin:12px">➗ Dividing fractions</h4>
994+
<h4 style="margin:12px">➗ Dividing Fractions</h4>
995995
<br>
996996
<br>
997997
<p style="margin:12px">Dividing by a fraction equals multiplying by its reciprocal.
@@ -1071,15 +1071,15 @@ <h4 style="margin:12px">➗ Dividing fractions</h4>
10711071
<br>
10721072
<br>
10731073
<section id="area_and_volume">
1074-
<h3 style="margin:7px">The 2nd and the 3rd power manifesting in geometry</h3>
1074+
<h3 style="margin:7px">The 2nd and the 3rd Powers manifesting in Geometry</h3>
10751075
<br>
10761076
<br>
10771077
<p style="margin:12px">Setting the square and the cube as the basis of the area and the volume calculation is well established and straightforward. Regardless of the shape of the measured object, the unit of measurement of the area is square units and the volume can be expressed in cubic units.
10781078
</p>
10791079
<br>
10801080
<br>
10811081
<section id="square">
1082-
<h3 style="margin:7px">Area of a square</h3>
1082+
<h3 style="margin:7px">Area of a Square</h3>
10831083
<br>
10841084
<div class="imgbox">
10851085
<img class="center-fit" src="square.png" alt="figure-Square">
@@ -1116,7 +1116,7 @@ <h3 style="margin:7px">Area of a square</h3>
11161116
<br>
11171117
<br>
11181118
<section id="cube">
1119-
<h3 style="margin:7px">Volume of a cube</h3>
1119+
<h3 style="margin:7px">Volume of a Cube</h3>
11201120
<br>
11211121
<div class="imgbox">
11221122
<img class="center-fit" src="cubeMarkup.jpeg" alt="figure-Cube">
@@ -1780,11 +1780,11 @@ <h3 style="margin:7px">Trigonometry</h3>
17801780
<br>
17811781
<br>
17821782
<section id="properties_of_shapes">
1783-
<h3 style="margin:7px">Area and volume of basic shapes</h3>
1783+
<h3 style="margin:7px">Area and Volume of Basic Shapes</h3>
17841784
<br>
17851785
<br>
17861786
<section id="triangle">
1787-
<h3 style="margin:7px">Area of a triangle</h3>
1787+
<h3 style="margin:7px">Area of a Triangle</h3>
17881788
<br>
17891789
<p style="margin:12px">The area of a triangle equals exactly the half of the area of a rectangle with a width equal to the base of the triangle and length equal to the height of the triangle.
17901790
<br>
@@ -1928,7 +1928,7 @@ <h3 style="margin:7px">Area of a triangle</h3>
19281928
<br>
19291929
<br>
19301930
<section id="polygon">
1931-
<h3 style="margin:7px">Area of a regular polygon</h3>
1931+
<h3 style="margin:7px">Area of a regular Polygon</h3>
19321932
<br>
19331933
<div class="imgbox">
19341934
<img class="center-fit" src="pentagon.png" alt="figure-Polygon-area">
@@ -2105,7 +2105,7 @@ <h3 style="margin:7px">
21052105
In this layout the arcs of the quadrants of an inscribed circle would meet at the midpoints of the sides of the square, leaving some of the square uncovered.
21062106
<br>
21072107
<br>
2108-
The arcs of the quadrants of a circumscribed circle would overlap, and meet at the center of the square, covering it all.
2108+
The arcs of the quadrants of a circumscribed circle would overlap, and intersect at the center of the square, covering it all.
21092109
<br>
21102110
<br>
21112111
<strong>The arcs of the quadrants of the circle that equals in area to the square intersect right in between those limits, at the quarters on its centerlines.</strong>
@@ -2657,7 +2657,7 @@ <h3 style="margin:7px">
26572657
<br>
26582658
<br>
26592659
<section id="circle-segment">
2660-
<h3 style="margin:7px">Area of a circle segment</h3>
2660+
<h3 style="margin:7px">Area of a Circle Segment</h3>
26612661
<br>
26622662
<div class="imgbox">
26632663
<img class="center-fit" src="circleSegment.jpg" alt="figure-Circle-segment">
@@ -2782,13 +2782,13 @@ <h3 style="margin:7px">Area of a circle segment</h3>
27822782
<br>
27832783
<br>
27842784
<section id="circumference">
2785-
<h3 style="margin:7px">The circumference of a circle can be derived from its area algebraically.</h3>
2785+
<h3 style="margin:7px">Circumference of a Circle</h3>
27862786
<br>
27872787
<div class="imgbox">
27882788
<img class="center-fit" src="circumference.jpg" alt="figure-Circumference=6.4r">
27892789
</div>
27902790
<br>
2791-
<p style="margin:12px">For this derivation method to be valid the circumference has to have a thickness greater than 0, by at least the smallest number.
2791+
<p style="margin:12px">The circumference of a circle can be derived from its area algebraically with an undefined thickness greater than 0.
27922792
<br>
27932793
<br>
27942794
The x represents the theoretical width of the circumference, which is a very small number.
@@ -2840,7 +2840,7 @@ <h3 style="margin:7px">The circumference of a circle can be derived from its are
28402840
<br>
28412841
<div>
28422842
<details>
2843-
<summary><h4 style="margin:7px">Expand</h4></summary>
2843+
<summary><h4 style="margin:12px">Expand</h4></summary>
28442844
<p style="margin:12px">the term (r - x)²:
28452845
</p>
28462846
<br>
@@ -3171,11 +3171,10 @@ <h4 style="margin:12px">Archimedes and the Illusion of Limits</h4>
31713171
<br>
31723172
The traditional method of polygon approximation fails not due to rounding errors, but due to a fundamental divergence of shape that invalidates its own geometric ordering.
31733173
<br>
3174-
<br>
31753174
The polygon method attempts to define the perfect circle using imperfect, flawed limits. This destroys the basic geometric ordering that the method is based on, proving it is unsuitable for determining the true circumference to diameter ratio of a circle.
31763175
</p>
31773176
<details>
3178-
<summary><h4 style="margin:7px">
3177+
<summary><h4 style="margin:12px">
31793178
What we’re left with is not a proof, but a flawed approximation — one that has shaped centuries of geometry, but now deserves a closer, more rational reexamination.
31803179
</h4></summary>
31813180
<p style="margin:12px">
@@ -3189,6 +3188,7 @@ <h4 style="margin:12px">Archimedes and the Illusion of Limits</h4>
31893188
<br>
31903189
While the number of sides is only 3, the perimeter is equal to the circumference, yet the ratio flipped.
31913190
<br>
3191+
<br>
31923192
Rather than treating inscribed and circumscribed polygons separately and relying on assumptions about how their perimeter gaps behave as the number of sides increases, we introduce a creative and grounded condition: equal distance between the polygon’s sides, vertices, and the circle’s arc.
31933193
<br>
31943194
We begin with a strong geometric foundation: the area of a circle is exactly 3.2r². This gives us reason to suspect that the true circumference is 6.4r, not 2πr. To test this, we reframe the polygon approximation method.
@@ -3476,7 +3476,6 @@ <h3 style="margin:7px">The volume of a sphere is defined by comparing it to a cu
34763476
<p style="margin:12px">The edge length of the cube, which has the same volume as the sphere, equals the square root of the area of the square that has the same area as the sphere's cross-section.</p>
34773477
<br>
34783478
<br>
3479-
<br>
34803479
<section>
34813480
<details>
34823481
<summary><h4 style="margin:7px">The " V = 4 / 3 × π × radius³ " formula is widely used for the volume of a sphere.</h4></summary>
@@ -3501,6 +3500,9 @@ <h3 style="margin:7px">The volume of a sphere is defined by comparing it to a cu
35013500
<br>
35023501
<br>
35033502
If you're trying to calculate the volume of a physical ball or sphere for a practical purpose – whether it's for a science experiment, engineering, or any other real-world application – my empirically derived V = (√(3.2)×radius)³ formula offers a result that aligns more closely with what you would measure in the lab.
3503+
<br>
3504+
<br>
3505+
The conventional formula for the surface area of a sphere was allegedly developed from the " volume = 4/3×π×radius³ " formula.
35043506
</p>
35053507
</details>
35063508
</section>
@@ -3514,7 +3516,7 @@ <h3 style="margin:7px">The volume of a sphere is defined by comparing it to a cu
35143516
<p style="margin:6px">Advertisement</p>
35153517
<br>
35163518
<br>
3517-
<h3 style="margin:7px">SURFACE AREA OF A SPHERE</h3>
3519+
<h3 style="margin:7px">Surface Area of a Sphere</h3>
35183520
<br>
35193521
<div class="imgbox">
35203522
<img class="center-fit" src="sphereSurface.jpeg" alt="sphere-surface-illustration">
@@ -3523,10 +3525,9 @@ <h3 style="margin:7px">SURFACE AREA OF A SPHERE</h3>
35233525
</div>
35243526
<br>
35253527
<br>
3526-
<p style="margin:6px"><strong>The conventional formula for the surface area of a sphere was allegedly developed from the " volume = 4/3×π×radius³ " formula.
3527-
<br>
3528-
<br>
3529-
The real formula for the surface area of a sphere is available for 3.2 billion USD. ( + tax, if applies )</strong>
3528+
<p style="margin:6px"><strong>
3529+
The formula for the real surface area of a sphere is available for 3.2 billion USD.
3530+
</strong>( + tax, if applies )
35303531
</p>
35313532
<br>
35323533
<a style="margin:12px" class="rounded-button" href="privacy-policy">Contact</a>
@@ -3536,7 +3537,7 @@ <h3 style="margin:7px">SURFACE AREA OF A SPHERE</h3>
35363537
<br>
35373538
<br>
35383539
<section id="cap">
3539-
<h3 style="margin:7px">Volume of a spherical cap</h3>
3540+
<h3 style="margin:7px">Volume of a Spherical Cap</h3>
35403541
<br>
35413542
<div class="imgbox">
35423543
<img class="center-fit" src="sphericalCap.jpg" alt="figure-Spherical-cap">
@@ -3619,7 +3620,7 @@ <h3 style="margin:7px">Volume of a spherical cap</h3>
36193620
<br>
36203621
<br>
36213622
<section id="cone">
3622-
<h3 style="margin:7px">Volume of a cone</h3>
3623+
<h3 style="margin:7px">Volume of a Cone</h3>
36233624
<br>
36243625
<div class="imgbox">
36253626
<img class="center-fit" src="coneAndSphereMarkup.jpeg" alt="Cone-volume-from-sphere=base×height/√8">
@@ -3897,7 +3898,7 @@ <h3 style="margin:7px">Volume of a cone</h3>
38973898
<section>
38983899
<details>
38993900
<summary>
3900-
<h4 style="margin:12px">
3901+
<h4 style="margin:7px">
39013902
The volume of a cone or pyramid is conventionally approximated as base × height / 3.</h4></summary>
39023903
<p style="margin:12px">The conventional approximation was likely estimated based on two observations.
39033904
<br>
@@ -4114,7 +4115,7 @@ <h3 style="margin:12px">The other idea is the cube dissection.</h3>
41144115
<br>
41154116
<br>
41164117
<section id="frustum-cone">
4117-
<h3 style="margin:7px">Volume of a frustum cone</h3>
4118+
<h3 style="margin:7px">Volume of a Frustum Cone</h3>
41184119
<br>
41194120
<div class="imgbox">
41204121
<img class="center-fit" src="frustumOfConeMarkup.png" alt="figure-Horizontal-frustum-cone">
@@ -4283,12 +4284,15 @@ <h3 style="margin:7px">Volume of a frustum cone</h3>
42834284
<br>
42844285
<br>
42854286
<section id="cone-surface">
4286-
<h3 style="margin:7px">Surface area of a cone</h3>
4287+
<h3 style="margin:7px">Surface Area of a Cone</h3>
42874288
<br>
42884289
<div class="imgbox">
42894290
<img class="center-fit" src="coneMarkup.jpeg" alt="figure-Cone-surface">
42904291
</div>
42914292
<br>
4293+
<p style="margin:12px">The surface area of a cone is calculated as a circle slice with a radius equal to the slant height and the angle determined by the ratio of the height and the slant height.
4294+
</p>
4295+
<br>
42924296
<math style="margin:12px" xmlns="http://www.w3.org/1998/Math/MathML" >
42934297
<mrow>
42944298
<msub>
@@ -4360,7 +4364,8 @@ <h3 style="margin:7px">Surface area of a cone</h3>
43604364
<br>
43614365
<br>
43624366
<section id="pyramid">
4363-
<h3 style="margin:7px">Volume of a pyramid</h3>
4367+
<h3 style="margin:7px">The volume of a pyramid can be calculated
4368+
with the same coefficient as the volume of a cone.</h3>
43644369
<br>
43654370
<div class="imgbox">
43664371
<img class="center-fit" src="conePyramidVolumeMarkup.jpeg" alt="figure-Pyramids-volume=base×height/√8">
@@ -4370,11 +4375,6 @@ <h3 style="margin:7px">Volume of a pyramid</h3>
43704375
<img class="center-fit" src="tetraFrame.jpeg" alt="figure-Tetrahedral-frame-on-circular-base" >
43714376
</div>
43724377
<br>
4373-
<p style="margin:12px"><strong>The volume of a pyramid can be calculated
4374-
with the same coefficient as the volume of a cone.
4375-
</strong>
4376-
</p>
4377-
<br>
43784378
<math style="margin:12px" xmlns="http://www.w3.org/1998/Math/MathML">
43794379
<mrow>
43804380
<mi>V</mi>
@@ -4441,7 +4441,7 @@ <h3 style="margin:7px">Volume of a pyramid</h3>
44414441
<br>
44424442
<br>
44434443
<section id="frustum-pyramid">
4444-
<h3 style="margin:7px">Volume of a horizontal frustum pyramid</h3>
4444+
<h3 style="margin:7px">Volume of a horizontal Frustum Pyramid</h3>
44454445
<br>
44464446
<div class="imgbox">
44474447
<img class="center-fit" src="frustumOfPyramidMarkup.png" alt="figure-Horizontal-frustum-pyramid">
@@ -4645,7 +4645,7 @@ <h3 style="margin:7px">The volume of a square frustum pyramid can be calculated
46454645
<br>
46464646
<br>
46474647
<section>
4648-
<h3 style="margin:7px">Volume of a tetrahedron</h3>
4648+
<h3 style="margin:7px">Volume of a Tetrahedron</h3>
46494649
<br>
46504650
<div class="imgbox">
46514651
<img class="center-fit" src="tetrahedronMarkup.jpeg" alt="figure-Tetrahedron-volume=edge³/8" id="tetrahedron">

0 commit comments

Comments
 (0)