Skip to content

Commit bb54b54

Browse files
authored
Update index.html
New figures. Powers explanation
1 parent b5a122c commit bb54b54

File tree

1 file changed

+12
-6
lines changed

1 file changed

+12
-6
lines changed

index.html

Lines changed: 12 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -585,6 +585,12 @@ <h3 itemprop="name">Dividing Fractions</h3><br>
585585
<p style="margin:12px">Example #3:
586586
<br><br>
587587
4^(1 / 2) = √4 = 2</p>
588+
<br><br>
589+
<p style="margin:12px" itemprop="description">Raising a fraction to a power means raising both the counter and the denominator to the same power.</p>
590+
<br>
591+
<p style="margin:12px">Example #4:
592+
<br><br>
593+
(2 / 3)^2 = 2² / 3² = 4 / 9</p>
588594
<br><br><br>
589595
<section itemprop="subjectOf" itemscope itemtype="http://schema.org/LearningResource" id="geometry">
590596
<h3 style="margin:7px" itemprop="name">The 2nd and the 3rd Powers manifesting in Geometry</h3>
@@ -1668,7 +1674,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Area of a regular Polygon</h3>
16681674
<meta itemprop="usageInfo" content="Only for regular polygons that can be tiled up to isosceles triangles">
16691675
<br>
16701676
<figure itemprop="image" class="imgbox" itemscope itemtype="http://schema.org/ImageObject">
1671-
<img class="center-fit" src="pentagon.png" alt="A regular polygon can be divided into as many isosceles triangles as many sides it has. Area = (number of sides) / 4 × ctg( 180° / (number of sides) ) × (side length)²">
1677+
<img class="center-fit" src="polygon.png" alt="A regular polygon can be divided into as many isosceles triangles as many sides it has. Area = (number of sides) / 4 × ctg( 180° / (number of sides) ) × (side length)²">
16721678
</figure>
16731679
<br>
16741680
<p itemprop="description" style="margin:12px">A regular polygon can be divided into as many isosceles triangles as many sides it has.</p>
@@ -1842,7 +1848,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Area of a Circle</h3>
18421848
<meta itemprop="usageInfo" content="Universally applicable">
18431849
<br>
18441850
<figure itemprop="image" class="imgbox" itemscope itemtype="http://schema.org/ImageObject">
1845-
<img class="center-fit" src="circleArea.png" alt="The circle is cut into four quadrants, each placed with their origin on the vertices of a square. The arcs of the quadrants of the circle that equals in area to the square intersect at the quarters on its centerlines. The ratio between the radius of the circle and the side of the square is calculable. r = side × √5 / 4 Area = 3.2r²">
1851+
<img class="center-fit" src="circle.png" alt="The circle is cut into four quadrants, each placed with their origin on the vertices of a square. The arcs of the quadrants of the circle that equals in area to the square intersect at the quarters on its centerlines. The ratio between the radius of the circle and the side of the square is calculable. r = side × √5 / 4 Area = 3.2r²">
18461852
</figure>
18471853
<br>
18481854
<section>
@@ -1974,7 +1980,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Area of a Circle</h3>
19741980
<summary><h4>When the overlapping area equals to the uncovered area in the middle, the sum of the areas of the quadrants is equal to the area of the square. That square represents the area of the circle in square units.</h4></summary>
19751981
<br>
19761982
<figure itemprop="image" class="imgbox" itemscope itemtype="http://schema.org/ImageObject">
1977-
<img class="center-fit" src="equityFigure.jpg" alt="Circle area = 3.2r²">
1983+
<img class="center-fit" src="equityFigure.png" alt="Circle area = 3.2r²">
19781984
</figure>
19791985
<br>
19801986
<div>
@@ -2438,7 +2444,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Circumference of a Circle</h3>
24382444
<meta itemprop="name" content="Circumference formula">
24392445
<br>
24402446
<figure itemprop="image" class="imgbox" itemscope itemtype="http://schema.org/ImageObject">
2441-
<img class="center-fit" src="circumference.jpg" alt="The circumference of a circle is derived from its area algebraically by subtracting a smaller circle and dividing the difference by the difference of the radii. Circumference = 6.4r">
2447+
<img class="center-fit" src="circumference.png" alt="The circumference of a circle is derived from its area algebraically by subtracting a smaller circle and dividing the difference by the difference of the radii. Circumference = 6.4r">
24422448
</figure>
24432449
<section style="margin:12px" id="pi">
24442450
<details>
@@ -2979,7 +2985,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Area of a Circle Segment</h3>
29792985
<meta itemprop="usageInfo" content="By segment height and radius. The radius can be calculated from the chord length.">
29802986
<br>
29812987
<figure itemprop="image" class="imgbox" itemscope itemtype="http://schema.org/ImageObject">
2982-
<img class="center-fit" src="circleSegment.jpg" alt="The area of a circle segment can be calculated by subtracting a triangle from a circle slice. Area = Acos(( r - n ) / r ) × r² - sin( Acos(( r - n ) / r ) × ( r - n ) × r">
2988+
<img class="center-fit" src="circleSegment.png" alt="The area of a circle segment can be calculated by subtracting a triangle from a circle slice. Area = Acos(( r - n ) / r ) × r² - sin( Acos(( r - n ) / r ) × ( r - n ) × r">
29832989
</figure>
29842990
<br>
29852991
<p itemprop="description" style="margin:12px">The area of a circle segment can be calculated by subtracting a triangle from a circle slice.</p>
@@ -3406,7 +3412,7 @@ <h3 itemprop="eduQuestionType" style="margin:7px">Volume of a Spherical Cap</h3>
34063412
<meta itemprop="name" content="Spherical cap volume formula">
34073413
<br>
34083414
<figure itemprop="image" class="imgbox" itemscope itemtype="http://schema.org/ImageObject">
3409-
<img class="center-fit" src="sphericalCap.jpg" alt="One dimension of the volume of sphere formula can be adjusted to calculate the volume of a spherical cap as a distorted hemisphere. V = 1.6 × (cap radius) × h × 4 / √5²">
3415+
<img class="center-fit" src="sphericalCap.png" alt="One dimension of the volume of sphere formula can be adjusted to calculate the volume of a spherical cap as a distorted hemisphere. V = 1.6 × (cap radius) × h × 4 / √5²">
34103416
</figure>
34113417
<br>
34123418
<p style="margin:12px" itemprop="description">One dimension of the volume of sphere formula can be adjusted to calculate the volume of a spherical cap as a distorted hemisphere.</p>

0 commit comments

Comments
 (0)