179179} ,
180180"dateCreated" :"2019-01-11" ,
181181"datePublished" :"2020-01-11" ,
182- "dateModified" :"2025-05-27 " ,
182+ "dateModified" :"2025-05-28 " ,
183183"description" : "Introducing the best-established and most accurate framework to calculate area and volume." ,
184184"disambiguatingDescription" : "Exact, empirically grounded and rigorously proven formulas over the conventional approximations." ,
185185"headline" :"Exact geometry" ,
256256{
257257 "@type" : "SolveMathAction" ,
258258"name" : "Circumference of a circle" ,
259- "description" : "The exact circumference of a circle using a refined approach that replaces traditional π-based approximations. This method is based on direct shape relationships, ensuring greater accuracy in real-world measurements. " ,
259+ "description" : "Algebraic derivation of the exact circumference of a circle from its area " ,
260260"disambiguatingDescription" : "Replaces traditional π-based approximations ensuring greater accuracy in real-world measurements." ,
261261 "keywords" :"Circumference of a Circle, Algebraic Derivation from the Area, Rigorously Proven" ,
262262 "target" : "https://basic-geometry.github.io/" ,
485485< div >
486486< h1 style ="font-size:160%;margin:7px "> Exact geometry</ h1 >
487487< br >
488- < div class ="imgbox ">
489- < figure >
488+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
490489 < img class ="center-fit " src ="geometry.jpeg " alt ="Geometry ">
491- < figcaption >
492- < p > © 2025 Gaál Sándor. All rights reserved.</ p >
493- < p > Created by: < a href ="https://www.x.com/gmac4247 "> Gaál Sándor</ a > , HU-2000 Szentendre, Ady Endre way 6.a</ p >
494- < p class ="description "> Artistic figure of the Core Geometric System ™</ p >
495- </ figcaption >
496- </ figure >
490+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
491+ < meta itemprop ="copyrightYear " content ="2025 ">
492+ < meta itemprop ="description " content ="An artistic geometric illustration. ">
497493</ div >
498494< br >
499495< p style ="margin:12px; " > Providing the best-established and most accurate framework to calculate area and volume using the 3D coordinate system.
@@ -506,14 +502,13 @@ <h1 style="font-size:160%;margin:7px">Exact geometry</h1>
506502< div >
507503< h2 style ="font-size:160%;margin:7px; "> Area of a square</ h2 >
508504< br >
509- < div class ="imgbox ">
505+ < div class ="imgbox " itemscope itemtype =" http://schema.org/CreativeWork " >
510506 < figure >
511507 < img class ="center-fit " src ="square.png " alt ="Square " id ="square ">
512- < figcaption >
513- < p > © 2025 Gaál Sándor. All rights reserved.</ p >
514- < p > Created by: < a href ="https://www.x.com/gmac4247 "> Gaál Sándor</ a > , HU-2000 Szentendre, Ady Endre way 6.a</ p >
515- < p class ="description "> Area of a square</ p >
516- </ figcaption >
508+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
509+ < meta itemprop ="copyrightYear " content ="2025 ">
510+ < meta itemprop ="description " content ="Area of a square ">
511+ </ figure >
517512</ div >
518513< br >
519514 < math style ="margin:12px; " xmlns ="http://www.w3.org/1998/Math/MathML " >
@@ -534,15 +529,13 @@ <h2 style="font-size:160%;margin:7px;">Area of a square</h2>
534529< div >
535530< h3 style ="font-size:160%;margin:7px; "> Volume of a cube</ h3 >
536531< br >
537- < div class ="imgbox ">
538- < figure >
532+ < div class ="imgbox " itemscope itemtype =" http://schema.org/CreativeWork " >
533+ < figure >
539534 < img class ="center-fit " src ="cubeMarkup.jpeg " alt ="Cube " id ="cube ">
540- < figcaption >
541- < p > © 2025 Gaál Sándor. All rights reserved.</ p >
542- < p > Created by: < a href ="https://www.x.com/gmac4247 "> Gaál Sándor</ a > , HU-2000 Szentendre, Ady Endre way 6.a</ p >
543- < p class ="description "> Volume of a cube</ p >
544- </ figcaption >
545- </ figure >
535+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
536+ < meta itemprop ="copyrightYear " content ="2025 ">
537+ < meta itemprop ="description " content ="Volume of a cube ">
538+ </ figure >
546539</ div >
547540< br >
548541 < math style ="margin:12px; " xmlns ="http://www.w3.org/1998/Math/MathML ">
@@ -563,9 +556,14 @@ <h3 style="font-size:160%;margin:7px;">Volume of a cube</h3>
563556< div >
564557< h4 style ="font-size:160%;margin:7px "> Trigonometry</ h4 >
565558< br >
566- < div class ="imgbox ">
559+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
560+ < figure >
567561 < img class ="center-fit " src ="trigonometry.png " alt ="Trigonometry " id ="trigonometry ">
568- </ div >
562+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
563+ < meta itemprop ="copyrightYear " content ="2025 ">
564+ < meta itemprop ="description " content ="Trigonometric entities ">
565+ </ figure >
566+ </ div >
569567< br >
570568< div >
571569< p style ="margin:12px; ">
@@ -753,9 +751,14 @@ <h4 style="font-size:160%;margin:7px">Trigonometry</h4>
753751< div >
754752< h5 style ="font-size:160%;margin:7px; "> Area of a regular polygon</ h5 >
755753< br >
756- < div class ="imgbox ">
757- < img class ="center-fit " src ="pentagon.png " alt ="Pentagon " id ="pentagon ">
758- </ div >
754+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
755+ < figure >
756+ < img class ="center-fit " src ="pentagon.png " alt ="Pentagon " id ="pentagon ">
757+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
758+ < meta itemprop ="copyrightYear " content ="2025 ">
759+ < meta itemprop ="description " content ="Area of a regular polygon ">
760+ </ figure >
761+ </ div >
759762< br >
760763< math style ="margin:12px; " xmlns ="http://www.w3.org/1998/Math/MathML ">
761764 < mrow >
@@ -834,8 +837,13 @@ <h5 style="font-size:160%;margin:7px;">Area of a regular polygon</h5>
834837< div >
835838< h6 style ="font-size:160%;margin:7px "> Area of a circle</ h6 >
836839< br >
837- < div class ="imgbox ">
840+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
841+ < figure >
838842 < img class ="center-fit " src ="areaOfACircle.jpg " alt ="Circle " id ="circle ">
843+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
844+ < meta itemprop ="copyrightYear " content ="2025 ">
845+ < meta itemprop ="description " content ="The exact area of a circle based on direct comparison with a square. ">
846+ </ figure >
839847</ div >
840848< br >
841849< p style ="margin:12px; " > The area of a circle is defined by comparing it to a square since that is the base of area calculation.
@@ -939,9 +947,14 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
939947< div >
940948 < h7 style ="font-size:160%;margin:7px "> Area of a circle segment</ h7 >
941949< br >
942- < div class ="imgbox ">
950+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
951+ < figure >
943952 < img class ="center-fit " src ="circleSegment.jpg " alt ="Circle-segment " id ="segment ">
944- </ div >
953+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
954+ < meta itemprop ="copyrightYear " content ="2025 ">
955+ < meta itemprop ="description " content ="The exact area of a circle segment by subtracting a triangle from a circle slice ">
956+ </ figure >
957+ </ div >
945958< br >
946959 < p style ="margin:12px; "> The area of a circle segment can be
947960calculated by subtracting a triangle from a
@@ -1007,9 +1020,14 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
10071020< div >
10081021< h8 style ="font-size:160%;margin:7px "> Circumference of a circle</ h8 >
10091022< br >
1010- < div class ="imgbox ">
1023+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1024+ < figure >
10111025 < img class ="center-fit " src ="circumference.jpg " alt ="Circle " id ="circumference ">
1012- </ div >
1026+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1027+ < meta itemprop ="copyrightYear " content ="2025 ">
1028+ < meta itemprop ="description " content ="Algebraic derivation of the exact circumference of a circle from its area ">
1029+ </ figure >
1030+ </ div >
10131031< br >
10141032< p style ="margin:12px; "> The circumference of a circle can be derived
10151033from its area algebraically.
@@ -1079,10 +1097,15 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
10791097< div >
10801098< h9 style ="font-size:160%;margin:7px; "> Volume of a sphere</ h9 >
10811099< br >
1082- < div class ="imgbox ">
1100+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1101+ < figure >
10831102 < img class ="center-fit " src ="sphereAndCubeMarkup.jpeg " alt ="Sphere " id ="sphere ">
1084- </ div >
1085- < br >
1103+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1104+ < meta itemprop ="copyrightYear " content ="2025 ">
1105+ < meta itemprop ="description " content ="Area of a square ">
1106+ </ figure >
1107+ </ div >
1108+ < br >
10861109< p style ="margin:12px; "> The volume of a sphere is defined by comparing it to a cube, as that's the base of volume calculation.
10871110< br > < br >
10881111Just as the volume of a cube equals the square root of its cross sectional area cubed - < math xmlns ="http://www.w3.org/1998/Math/MathML " >
@@ -1133,9 +1156,14 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
11331156< h10 style ="font-size:160%;margin:7px; "> Volume of a spherical cap
11341157</ h10 >
11351158< br >
1136- < div class ="imgbox ">
1137- < img class ="center-fit " src ="sphericalCap.jpg " alt ="Sphere " id ="cap ">
1138- </ div >
1159+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1160+ < figure >
1161+ < img class ="center-fit " src ="sphericalCap.jpg " alt ="Sphere " id ="cap ">
1162+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1163+ < meta itemprop ="copyrightYear " content ="2025 ">
1164+ < meta itemprop ="description " content ="The volume of a spherical cap based on the radius of the sphere and the cap ">
1165+ </ figure >
1166+ </ div >
11391167 < br >
11401168< p style ="margin:12px; "> Volume of a spherical cap:
11411169< br >
@@ -1195,15 +1223,25 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
11951223< div >
11961224< h11 style ="font-size:160%;margin:7px; "> Volume of a cone</ h11 >
11971225< br >
1198- < div class ="imgbox ">
1226+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1227+ < figure >
11991228 < img class ="center-fit " src ="coneAndSphereMarkup.jpeg " alt ="Cone-and-sphere " id ="cone ">
1229+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1230+ < meta itemprop ="copyrightYear " content ="2025 ">
1231+ < meta itemprop ="description " content ="comparing the volume of a quarter cone to an octant sphere with an equal radius ">
1232+ </ figure >
12001233</ div >
12011234< br >
12021235< p style ="margin:12px; "> The volume of a cone can be calculated by algebraically comparing the volume of a quarter cone with equal radius and height to an octant sphere with equal radius, through a quarter cylinder.
12031236</ p >
12041237< br >
1205- < div class ="imgbox ">
1238+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1239+ < figure >
12061240 < img class ="center-fit " src ="octantSphereQuarterCone.jpeg " alt ="Sphere-and-vertical-frustum-cone ">
1241+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1242+ < meta itemprop ="copyrightYear " content ="2025 ">
1243+ < meta itemprop ="description " content ="comparing the volume of a quarter cone to an octant sphere with an equal radius ">
1244+ </ figure >
12071245</ div >
12081246< br >
12091247< math style ="margin:12px; " xmlns ="http://www.w3.org/1998/Math/MathML " >
@@ -1272,12 +1310,22 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
12721310< p style ="margin:12px; "> The base of the two shapes is a quarter circle.
12731311</ p >
12741312< br >
1275- < div class ="imgbox ">
1313+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1314+ < figure >
12761315 < img class ="center-fit " src ="coneAndSphereComparison.png " alt ="Sphere-and-cone-projection ">
1316+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1317+ < meta itemprop ="copyrightYear " content ="2025 ">
1318+ < meta itemprop ="description " content ="comparing the volume of a quarter cone to an octant sphere with an equal radius ">
1319+ </ figure >
12771320</ div >
12781321< br >
1279- < div class ="imgbox ">
1322+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1323+ < figure >
12801324 < img class ="center-fit " src ="sphereAndConeMarkup.jpeg " alt ="Sphere-and-cone ">
1325+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1326+ < meta itemprop ="copyrightYear " content ="2025 ">
1327+ < meta itemprop ="description " content ="comparing the volume of a quarter cone to an octant sphere with an equal radius ">
1328+ </ figure >
12811329</ div >
12821330< br >
12831331< p style ="margin:12px; "> < math xmlns ="http://www.w3.org/1998/Math/MathML " >
@@ -1450,9 +1498,14 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
14501498< div >
14511499< h12 style ="font-size:160%;margin:7px; "> Volume of a frustum cone</ h12 >
14521500< br >
1453- < div class ="imgbox ">
1501+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1502+ < figure >
14541503 < img class ="center-fit " src ="frustumOfConeMarkup.png " alt ="Horizontal-frustum-cone ">
1455- </ div >
1504+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1505+ < meta itemprop ="copyrightYear " content ="2025 ">
1506+ < meta itemprop ="description " content ="The exact volume of a frustum cone based on its top and bottom diameter and height ">
1507+ </ figure >
1508+ </ div >
14561509< br >
14571510< p style ="margin:12px; "> The volume of a frustum cone can be
14581511calculated by subtracting the missing tip
@@ -1564,9 +1617,14 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
15641617< div >
15651618< h13 style ="font-size:160%;margin:7px; "> Surface area of a cone</ h13 >
15661619< br >
1567- < div class ="imgbox ">
1568- < img class ="center-fit " src ="coneMarkup.jpeg " alt ="Cone " id ="coneSurface ">
1569- </ div >
1620+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1621+ < figure >
1622+ < img class ="center-fit " src ="coneMarkup.jpeg " alt ="Cone " id ="coneSurface ">
1623+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1624+ < meta itemprop ="copyrightYear " content ="2025 ">
1625+ < meta itemprop ="description " content ="The exact surface area of a cone based on its radius and height ">
1626+ </ figure >
1627+ </ div >
15701628< br >
15711629< math style ="margin:12px; " xmlns ="http://www.w3.org/1998/Math/MathML " >
15721630< mrow >
@@ -1610,9 +1668,14 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
16101668< div >
16111669< h14 style ="font-size:160%;margin:7px "> Volume of a pyramid</ h14 >
16121670< br >
1613- < div class ="imgbox ">
1614- < img class ="center-fit " src ="conePyramidVolumeMarkup.jpeg " alt ="Pyramids " id ="pyramid ">
1615- </ div >
1671+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1672+ < figure >
1673+ < img class ="center-fit " src ="conePyramidVolumeMarkup.jpeg " alt ="Pyramids " id ="pyramid ">
1674+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1675+ < meta itemprop ="copyrightYear " content ="2025 ">
1676+ < meta itemprop ="description " content ="The exact volume of a pyramid based on its bottom area and height using the coefficient of the volume of a cone ">
1677+ </ figure >
1678+ </ div >
16161679< br >
16171680< br >
16181681< div class ="imgbox ">
@@ -1650,9 +1713,14 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
16501713< div >
16511714< h15 style ="font-size:160%;margin:7px; "> Volume of a horizontal frustum pyramid</ h15 >
16521715< br >
1653- < div class ="imgbox ">
1716+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1717+ < figure >
16541718 < img class ="center-fit " src ="frustumOfPyramidMarkup.png " alt ="Horizontal-frustum-pyramid ">
1655- </ div >
1719+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1720+ < meta itemprop ="copyrightYear " content ="2025 ">
1721+ < meta itemprop ="description " content ="The exact volume of a frustum pyramid based on its top and bottom base area and height ">
1722+ </ figure >
1723+ </ div >
16561724< br >
16571725< p style ="margin:12px; "> The volume of a frustum pyramid can be
16581726calculated by subtracting the missing tip
@@ -1790,9 +1858,14 @@ <h6 style="font-size:160%;margin:7px">Area of a circle</h6>
17901858< div >
17911859< h16 style ="font-size:160%;margin:7px "> Volume of a tetrahedron</ h16 >
17921860< br >
1793- < div class ="imgbox ">
1794- < img class ="center-fit " src ="tetrahedronMarkup.jpeg " alt ="Tetrahedron " id ="tetrahedron ">
1795- </ div >
1861+ < div class ="imgbox " itemscope itemtype ="http://schema.org/CreativeWork ">
1862+ < figure >
1863+ < img class ="center-fit " src ="tetrahedronMarkup.jpeg " alt ="Tetrahedron " id ="tetrahedron ">
1864+ < meta itemprop ="creator " content ="Gaál Sándor HU-2000 Szentendre Ady Endre way 6.A ">
1865+ < meta itemprop ="copyrightYear " content ="2025 ">
1866+ < meta itemprop ="description " content ="The exact volume of a tetrahedron based on its edge length ">
1867+ </ figure >
1868+ </ div >
17961869< br >
17971870< math style ="margin:12px; " xmlns ="http://www.w3.org/1998/Math/MathML ">
17981871 < mrow >
0 commit comments