@@ -551,7 +551,7 @@ <h1 style="font-size:140%;margin:7px">Introducing The Core Geometric System ™<
551551</ div >
552552< br >
553553< br >
554- < h1 style ="margin:7px; "> The Basic Geometry Curriculum</ h1 >
554+ < h2 style ="margin:7px; "> The Basic Geometry Curriculum</ h2 >
555555< br >
556556< br >
557557< p style ="margin:12px; ">
@@ -567,11 +567,11 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
567567< br >
568568< section >
569569< details >
570- < summary > < h2 > 1. Numbers and numeric systems</ h2 > </ summary >
570+ < summary > < h3 > 1. Numbers and numeric systems</ h3 > </ summary >
571571< div >
572572< br >
573573< br >
574- < p style =" margin:12px; " > < b > Numbers</ b > </ p >
574+ < section > < h4 > Numbers</ h4 >
575575< br >
576576< table >
577577 < thead >
@@ -607,12 +607,12 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
607607 </ tr >
608608 </ tbody >
609609</ table >
610- </ div >
610+ </ section >
611611< br >
612612< br >
613613< br >
614- < div >
615- < p style =" margin:12px; " > < b > Numeric systems</ b >
614+ < section >
615+ < h4 > Numeric systems</ h4 >
616616< br >
617617< br >
618618Example #1 - The year 2025 in the decimal system with Arab numerals</ p >
@@ -716,23 +716,24 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
716716< br >
717717< p style ="margin:12px; "> (1 × 2¹⁰) + (1 × 2⁹) + (1 × 2⁸) + (1 × 2⁷) + (1 × 2⁶) + (1 × 2⁵) + (0 × 2⁴) + (1 × 2³) + (0 × 2²) + (0 × 2¹) + (1 × 2⁰) = 2025</ p >
718718< br >
719- </ div >
719+ </ section >
720720</ details >
721721</ section >
722722< br >
723723< br >
724724< section >
725725< details >
726- < summary > < h2 > 2. Mathematical operations</ h2 > </ summary >
726+ < summary > < h3 > 2. Mathematical operations</ h3 > </ summary >
727727< br >
728728< br >
729729< section >
730- < p style =" margin:12px; " > < h3 > = The equity symbol</ h3 >
730+ < h4 > = The equity symbol</ h4 >
731731< br >
732732< br >
733- The numbers or expressions of one side equal in value to the other side.
733+ < p style =" margin:12px; " > The numbers or expressions of one side equal in value to the other side.
734734< br >
735- < br > Example:
735+ < br >
736+ < p style ="margin:12px; "> Example:
736737< br >
737738< br >
7387391 + 2 = 3
@@ -742,10 +743,10 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
742743< br >
743744< br >
744745< section >
745- < p style =" margin:12px; " > < h3 > ➕ Addition</ h3 >
746+ < h4 > ➕ Addition</ h4 >
746747< br >
747748< br >
748- Example #1:
749+ < p style =" margin:12px; " > Example #1:
749750< br >
750751< br >
7517521 + 1 = 2
@@ -765,10 +766,10 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
765766< br >
766767< br >
767768< section >
768- < p style =" margin:12px; " > < h3 > ➖ Subtraction</ h3 >
769+ < h4 > ➖ Subtraction</ h4 >
769770< br >
770771< br >
771- The opposite of addition
772+ < p style =" margin:12px; " > The opposite of addition
772773< br >
773774< br >
774775Example #1:
@@ -791,10 +792,10 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
791792< br >
792793< br >
793794< section >
794- < p style =" margin:12px; " > < h3 > ✖️ Multiplication</ h3 >
795+ < h4 > ✖️ Multiplication</ h4 >
795796< br >
796797< br >
797- An advanced form of addition
798+ < p style =" margin:12px; " > An advanced form of addition
798799< br >
799800< br >
800801Example #1:
@@ -822,10 +823,10 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
822823< br >
823824< br >
824825< section >
825- < p style =" margin:12px; " > < h3 > ➗ Division</ h3 >
826+ < h4 > ➗ Division</ h4 >
826827< br >
827828< br >
828- An advanced from of subtraction, the logical opposite of multiplication
829+ < p style =" margin:12px; " > An advanced from of subtraction, the logical opposite of multiplication
829830< br >
830831< br >
831832Example #1:
@@ -854,7 +855,7 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
854855< br >
855856< section >
856857< details >
857- < summary > < h2 > 3. Fractions</ h2 > </ summary >
858+ < summary > < h3 > 3. Fractions</ h3 > </ summary >
858859< br >
859860< br >
860861< p style ="margin:12px; "> Fractions are results of division, some are non-whole numbers.
@@ -889,10 +890,10 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
889890< br >
890891< br >
891892< section >
892- < p style =" margin:12px; " > < h4 > ➕ Adding fractions</ h4 >
893+ < h4 > ➕ Adding fractions</ h4 >
893894< br >
894895< br >
895- Adding the counters if the denominators are the same.
896+ < p style =" margin:12px; " > Adding the counters if the denominators are the same.
896897< br >
897898< br >
898899Example:
@@ -919,10 +920,10 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
919920< br >
920921< br >
921922< section >
922- < p style =" margin:12px; " > < h4 > ➖ Subtracting fractions</ h4 >
923+ < h4 > ➖ Subtracting fractions</ h4 >
923924< br >
924925< br >
925- Subtracting the counters if the denominators are the same.
926+ < p style =" margin:12px; " > Subtracting the counters if the denominators are the same.
926927< br >
927928< br >
928929Example:
@@ -949,10 +950,10 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
949950< br >
950951< br >
951952< section >
952- < p style =" margin:12px; " > < h4 > ✖️ Multiplying fractions</ h4 >
953+ < h4 > ✖️ Multiplying fractions</ h4 >
953954< br >
954955< br >
955- Multiplying counter by counter and denominator by denominator.
956+ < p style =" margin:12px; " > Multiplying counter by counter and denominator by denominator.
956957< br >
957958< br >
958959Example:
@@ -977,10 +978,10 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
977978< br >
978979< br >
979980< section >
980- < p style =" margin:12px; " > < h4 > ➗ Dividing fractions</ h4 >
981+ < h4 > ➗ Dividing fractions</ h4 >
981982< br >
982983< br >
983- Dividing by a fraction equals multiplying by its reciprocal.
984+ < p style =" margin:12px; " > Dividing by a fraction equals multiplying by its reciprocal.
984985< br >
985986< br >
986987Example:
@@ -1018,7 +1019,7 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
10181019< br >
10191020< section >
10201021< details >
1021- < summary > < h2 > 4. Powers</ h2 > </ summary >
1022+ < summary > < h3 > 4. Powers</ h3 > </ summary >
10221023< br >
10231024< br >
10241025< p style ="margin:12px; "> Raising a number or unit of measurement to a power means multiplying it by itself.
@@ -1057,14 +1058,14 @@ <h1 style="margin:7px;">The Basic Geometry Curriculum</h1>
10571058< br >
10581059< br >
10591060< section >
1060- < h1 style ="margin:7px "> The 2nd and the 3rd power manifesting in geometry</ h1 >
1061+ < h2 style ="margin:7px "> The 2nd and the 3rd power manifesting in geometry</ h2 >
10611062< br >
10621063< br >
10631064< p style ="margin:12px; "> Setting the square and the cube as the basis of the area and the volume calculation is well established and straightforward. Regardless of the shape of the measured object, the unit of measurement of the area is square units and the volume can be expressed in cubic units.
10641065</ p >
10651066< br >
10661067< br >
1067- < h2 style ="font-size:160%;margin:7px; "> Area of a square</ h2 >
1068+ < h3 style ="font-size:160%;margin:7px; "> Area of a square</ h3 >
10681069< br >
10691070< br >
10701071< div class ="imgbox ">
@@ -1098,7 +1099,7 @@ <h2 style="font-size:160%;margin:7px;">Area of a square</h2>
10981099< br >
10991100< br >
11001101< br >
1101- < h2 style ="font-size:160%;margin:7px; "> Volume of a cube</ h2 >
1102+ < h3 style ="font-size:160%;margin:7px; "> Volume of a cube</ h3 >
11021103< br >
11031104< br >
11041105< div class ="imgbox ">
@@ -1135,7 +1136,7 @@ <h2 style="font-size:160%;margin:7px;">Volume of a cube</h2>
11351136< br >
11361137< br >
11371138< section >
1138- < h2 style ="margin:12px; "> 5. Geometry</ h2 >
1139+ < h3 style ="margin:12px; "> 5. Geometry</ h3 >
11391140< br >
11401141< br >
11411142< br >
0 commit comments