You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"accessibilitySummary": "Mathematical equations with figures and explanation",
114
-
"accountablePerson": {
115
-
"@type": "Person",
116
-
"address": {
117
-
"@type": "PostalAddress",
118
-
"addressLocality": "Szentendre",
119
-
"addressRegion": "Hungary",
120
-
"postalCode": "2000",
121
-
"streetAddress": "Ady Endre út 6.A"
122
-
},
123
-
"email": "gmac4247@gmail.com",
124
-
"jobTitle": "Administrator",
125
-
"name": "Gaál Sándor",
126
-
"telephone": "+36305075125",
127
-
"url": "https://www.x.com/gmac4247"
128
-
},
129
-
"author": {
130
-
"@type": "Person",
131
-
"address": {
132
-
"@type": "PostalAddress",
133
-
"addressLocality": "Szentendre",
134
-
"addressRegion": "Hungary",
135
-
"postalCode": "2000",
136
-
"streetAddress": "Ady Endre út 6.A"
137
-
},
138
-
"email": "gmac4247@gmail.com",
139
-
"jobTitle": "Administrator",
140
-
"name": "Gaál Sándor",
141
-
"telephone": "+36305075125",
142
-
"url": "https://www.x.com/gmac4247"
143
-
},
144
-
"contributor": [
145
-
{
146
-
"@type": "Person",
147
-
"name": "Adina",
148
-
"description": "Spiritual supporter"
149
-
},
150
-
151
-
{
152
-
"@type": "Thing",
153
-
"name": "Microsoft Copilot",
154
-
"description": "AI language model, Images generated with the help of Microsoft Copilot"
155
-
},
156
-
157
-
{
158
-
"@type": "Thing",
159
-
"name": "Gemini",
160
-
"description": "AI language model, The proof of the area of a circle made with the help of Gemini"
161
-
},
162
-
163
-
{
164
-
"@type": "Thing",
165
-
"name": "Grok",
166
-
"description": "AI language model, The explanation of the cube dissection method made with the help of Grok"
167
-
}
168
-
],
169
-
"copyrightHolder": {
170
-
"@type": "Person",
171
-
"address": {
172
-
"@type": "PostalAddress",
173
-
"addressLocality": "Szentendre",
174
-
"addressRegion": "Hungary",
175
-
"postalCode": "2000",
176
-
"streetAddress": "Ady Endre út 6.A"
177
-
},
178
-
"email": "gmac4247@gmail.com",
179
-
"jobTitle": "Administrator",
180
-
"name": "Gaál Sándor",
181
-
"telephone": "+36305075125",
182
-
"url": "https://www.x.com/gmac4247"
183
-
},
184
-
"copyrightNotice": "All rights reserved.",
185
-
"copyrightYear": "2020",
186
-
"creator": {
187
-
"@type": "Person",
188
-
"address": {
189
-
"@type": "PostalAddress",
190
-
"addressLocality": "Szentendre",
191
-
"addressRegion": "Hungary",
192
-
"postalCode": "2000",
193
-
"streetAddress": "Ady Endre út 6.A"
194
-
},
195
-
"email": "gmac4247@gmail.com",
196
-
"jobTitle": "Administrator",
197
-
"name": "Gaál Sándor",
198
-
"telephone": "+36305075125",
199
-
"url": "https://www.x.com/gmac4247"
200
-
},
201
-
"dateCreated": "2019-01-11",
202
-
"datePublished": "2020-01-11",
203
-
"dateModified": "2025-12-09",
204
-
"description": "Introducing the best-established and most accurate framework to calculate area and volume.",
205
-
"disambiguatingDescription": "By fundamentally shifting the axioms from the abstract, zero-dimensional point to the square and the cube as the primary, physically-relevant units for measurement, we define the properties of shapes like the circle and sphere not through abstract limits, but through their direct, rational relationship to these foundational units. This system doesn't require advanced calculus or imaginary numbers.",
206
-
"headline": "Introducing the Core Geometric System ™",
"description": "The best framework for calculating area and volume.",
220
-
"disambiguatingDescription": "Exact formulas derived entirely from first principles",
221
-
"inLanguage": "en",
222
-
"keywords": "Exact Formulas, Area of a Circle, Circumference of a Circle, Volume of a Sphere, Volume of a Cone, Volume of a Pyramid, Volume of a Tetrahedron, Volume of a Frustum",
223
-
"url": "https://basic-geometry.github.io",
224
-
"usageInfo": "Logically consistent interconnected framework grounded in first principles ensuring cutting edge accuracy for critical applications like navigation and engineering."
<imgclass="center-fit" src="areaOfACircle.jpg" alt="The circle is cut into four quadrants, each placed with their origin on the vertices of a square. The arcs of the quadrants of the circle that equals in area to the square intersect at the quarters on its centerlines. The ratio between the radius of the circle and the side of the square is calculable. r = side × √5 / 4 Area = 3.2r²">
@@ -4190,13 +4059,14 @@ <h3 itemprop="name" style="margin:7px">Volume of a Frustum Cone</h3>
<imgclass="center-fit" src="conePyramidVolumeMarkup.jpeg" alt="The volume of a pyramid can be calculated with the same coefficient as the volume of a cone. Volume = base × height / √8">
4198
4065
</figure>
4199
4066
<br>
4067
+
<pitemprop="abstract" style="margin:12px">The volume of a pyramid can be calculated
4068
+
with the same coefficient as the volume of a cone.</p>
<imgclass="center-fit" src="tetraFrame.jpeg" alt="The volume of a pyramid can be calculated with the same coefficient as the volume of a cone. Volume = base × height / √8">
4202
4072
</figure>
@@ -4206,6 +4076,7 @@ <h3 itemprop="description" style="margin:7px">The volume of a pyramid can be cal
4206
4076
<mrow>
4207
4077
<mi>V</mi>
4208
4078
<mo>=</mo>
4079
+
<mrow>
4209
4080
<mfrac>
4210
4081
<mrow>
4211
4082
<msub>
@@ -4220,6 +4091,7 @@ <h3 itemprop="description" style="margin:7px">The volume of a pyramid can be cal
4220
4091
</msqrt>
4221
4092
</mfrac>
4222
4093
</mrow>
4094
+
</mrow>
4223
4095
</math>
4224
4096
</div>
4225
4097
<br>
@@ -4279,9 +4151,7 @@ <h3 itemprop="name" style="margin:7px">Volume of a horizontal Frustum Pyramid</h
4279
4151
<pitemprop="description" style="margin:12px"><strong>Subtracting the missing tip from a theoretical full pyramid gives the volume of a frustum pyramid.
4280
4152
<br>
4281
4153
<br>
4282
-
The height of the theoretical full pyramid can be calculated by the frustum height and the ratio between the top and bottom edges or areas.
4283
-
</strong>
4284
-
</p>
4154
+
The height of the theoretical full pyramid can be calculated by the frustum height and the ratio between the top and bottom edges or areas.</strong></p>
0 commit comments