Skip to content

Commit 0481555

Browse files
authored
Update index.html
1 parent 6017ea6 commit 0481555

File tree

1 file changed

+28
-28
lines changed

1 file changed

+28
-28
lines changed

index.html

Lines changed: 28 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -612,7 +612,7 @@ <h3 style="margin:7px">Area of a Square</h3>
612612
A square is a rectangle with equal sides.</p>
613613
<br>
614614
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
615-
<meta itemprop="description" content="Exact square area formula: Area = side²">
615+
<meta itemprop="description" content="Exact square area formula: Area = side^2">
616616
<span itemprop="name">A<sub>(square)</sub></span>=
617617
<span itemprop="value">
618618
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -652,7 +652,7 @@ <h3 style="margin:7px">Volume of a Cube</h3>
652652
A cube is a cuboid with equal edges.</p>
653653
<br>
654654
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
655-
<meta itemprop="description" content="Exact cube volume formula: Volume = edge³">
655+
<meta itemprop="description" content="Exact cube volume formula: Volume = edge^3">
656656
<span itemprop="name">V<sub>(cube)</sub></span>=
657657
<span itemprop="value">
658658
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -746,7 +746,7 @@ <h3 itemprop="name" style="margin:7px">Trigonometry</h3>
746746
</div>
747747
<br>
748748
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue" id="cotangent">
749-
<meta itemprop="description" content="Definition of cotangent: tangent = adjacent / opposite">
749+
<meta itemprop="description" content="Definition of cotangent: cotangent = adjacent / opposite">
750750
<span itemprop="name">cotangent</span>=
751751
<span itemprop="value">
752752
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -763,7 +763,7 @@ <h3 itemprop="name" style="margin:7px">Trigonometry</h3>
763763
<p itemprop="usageInfo" style="margin:12px">Trigonometric functions with an "Arc" - or simply A - prefix refer to the angle corresponding to a value of that function.</p>
764764
<br><br>
765765
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
766-
<meta itemprop="description" content="hypotenuse² = ( leg1 )² + ( leg2 )²">
766+
<meta itemprop="description" content="hypotenuse^2 = ( leg1 )^2 + ( leg2 )^2">
767767
<span itemprop="name">hypotenuse² </span>=
768768
<span itemprop="value">
769769
<math style="margin:12px" xmlns="http://www.w3.org/1998/Math/MathML">
@@ -1638,7 +1638,7 @@ <h3 style="margin:7px" itemprop="name">Calculate the Area of a Triangle</h3>
16381638
</div>
16391639
<br><br><br>
16401640
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
1641-
<meta itemprop="description" content="Exact triangle area formula a.k.a. Heron's formula: Area = ( S × ( S - side1 ) × ( S - side2 ) × ( S - side3 ) )">
1641+
<meta itemprop="description" content="Exact triangle area formula a.k.a. Heron's formula: Area = sqrt( S × ( S - side1 ) × ( S - side2 ) × ( S - side3 ) )">
16421642
<span itemprop="name">A<sub>(triangle)</sub></span>=
16431643
<span itemprop="value">
16441644
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -1806,7 +1806,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a regular Polygon</
18061806
</div>
18071807
<br>
18081808
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
1809-
<meta itemprop="description" content="Exact polygon area formula: Area = n / 4 × ctg( 180° / n ) × x / 2">
1809+
<meta itemprop="description" content="Exact polygon area formula: Area = n / 4 × ctg( 180deg / n ) × x / 2">
18101810
<span itemprop="name">A<sub>(polygon)</sub></span>=
18111811
<span itemprop="value">
18121812
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -1944,7 +1944,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle</h3>
19441944
The ratio between the radius and the side length is calculable.</p>
19451945
<br>
19461946
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
1947-
<meta itemprop="description" content="Calculating the ratio between the squared radius of the circle and the square that represents its area via Pythagorean theorem: radius² = ( side / 4 )² + ( side / 2 )²">
1947+
<meta itemprop="description" content="The ratio between the squared radius of the circle and an equiareal square: radius^2 = ( side / 4 )^2 + ( side / 2 )^2">
19481948
<span itemprop="name">radius²</span>=
19491949
<span itemprop="value">
19501950
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -1979,7 +1979,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle</h3>
19791979
</div>
19801980
<br>
19811981
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
1982-
<meta itemprop="description" content="The ratio between the radius of the circle and the square that represents its area: radius = side × √5 / 4">
1982+
<meta itemprop="description" content="The ratio between the radius of the circle and an equiareal square: radius = side × sqrt(5) / 4">
19831983
<span itemprop="name">radius</span>=
19841984
<span itemprop="value">
19851985
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -2470,7 +2470,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle</h3>
24702470
<p style="margin:12px" itemprop="abstract">The area of both the square and the sum of the quadrants equals 16 right triangles with legs of a quarter, and a half of the square's sides, and its hypotenuse equal to the radius of the circle.</p>
24712471
<br>
24722472
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
2473-
<meta itemprop="description" content="Exact circle area formula: Area = 3.2 × radius²">
2473+
<meta itemprop="description" content="Exact circle area formula: Area = 3.2 × radius^2">
24742474
<span itemprop="name">A<sub>(circle)</sub></span>=
24752475
<span itemprop="value">
24762476
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -3152,7 +3152,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle Segment</h
31523152
<meta itemprop="accessibilityHazard" content="none">
31533153
<meta itemprop="accessibilitySummary" content="Equations with figures and explanations">
31543154
<meta itemprop="applicationCategory" content="Geometric Calculator">
3155-
<meta itemprop="disambiguatingDescription" content="Circle area based on the true area of a circle - 3.2 × radius² -, instead of the pi=3.14... approximate.">
3155+
<meta itemprop="disambiguatingDescription" content="Circle area based on the true area of a circle - 3.2 × radius^2 -, instead of the pi=3.14... approximate.">
31563156
<meta itemprop="featureList" content="Calculates the area of a circle segment from its height and the radius of its parent circle with an exact formula.">
31573157
<meta itemprop="inLanguage" content="en">
31583158
<meta itemprop="interactivityType" content="Active">
@@ -3164,7 +3164,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle Segment</h
31643164
<meta itemprop="usageInfo" content="Exact calculation instead of the traditional abstract pi approximation">
31653165
<br>
31663166
<figure itemprop="image" class="imgbox" itemscope itemtype="http://schema.org/ImageObject">
3167-
<img class="center-fit" src="circleSegment.png" alt="The area of a circle segment can be calculated by subtracting a triangle from a circle slice. Area = Acos(( r - n ) / r ) × r² - sin( Acos(( r - n ) / r ) × ( r - n ) × r">
3167+
<img class="center-fit" src="circleSegment.png" alt="The area of a circle segment can be calculated by subtracting a triangle from a circle slice. Area = Acos(( r - n ) / r ) × r^2 - sin( Acos(( r - n ) / r ) × ( r - n ) × r">
31683168
</figure>
31693169
<details style="margin:12px">
31703170
<summary><h4 itemprop="description">The area of a circle segment can be calculated by subtracting a triangle from a circle slice.</h4></summary>
@@ -3173,7 +3173,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle Segment</h
31733173
<p itemprop="abstract">If the radius of the parent circle is unknown it can be calculated from the chord.</p>
31743174
<br>
31753175
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3176-
<meta itemprop="description" content="Radius of the parent circle: Radius = ( length² + 4 × height² ) / 8 × height">
3176+
<meta itemprop="description" content="Radius of the parent circle: Radius = ( length^2 + 4 × height^2 ) / 8 × height">
31773177
<span itemprop="name">Radius</span>=
31783178
<span itemprop="value">
31793179
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -3264,7 +3264,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle Segment</h
32643264
</details>
32653265
<br>
32663266
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3267-
<meta itemprop="description" content="Exact circle segment area formula: Area = Acos( ( radius - height ) / radius ) × radius² - sin( Acos( ( radius - height ) / radius ) × radius ) × ( radius - height ) × radius">
3267+
<meta itemprop="description" content="Exact circle segment area formula: Area = Acos( ( radius - height ) / radius ) × radius^2 - sin( Acos( ( radius - height ) / radius ) × radius ) × ( radius - height ) × radius">
32683268
<span itemprop="name">A<sub>(segment)</sub></span>=
32693269
<span itemprop="value">
32703270
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -3428,7 +3428,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Surface Area of a Cone</h3>
34283428
<meta itemprop="accessibilityHazard" content="none">
34293429
<meta itemprop="accessibilitySummary" content="Equations with figures and explanations">
34303430
<meta itemprop="applicationCategory" content="Geometric Calculator">
3431-
<meta itemprop="disambiguatingDescription" content="Circle area based on the exact 3.2 × radius² formula, instead of the pi=3.14... approximate."><meta itemprop="featureList" content="Calculates circumference from the radius with an exact formula.">
3431+
<meta itemprop="disambiguatingDescription" content="Circle area based on the exact 3.2 × radius^2 formula, instead of the pi=3.14... approximate."><meta itemprop="featureList" content="Calculates circumference from the radius with an exact formula.">
34323432
<meta itemprop="featureList" content="Calculates the surface area of a cone from its height and radius with an exact formula.">
34333433
<meta itemprop="inLanguage" content="en">
34343434
<meta itemprop="interactivityType" content="Active">
@@ -3478,7 +3478,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Surface Area of a Cone</h3>
34783478
<p itemprop="abstract">The ratio between the bottom radius and the slant height gives the angle of the circle slice.</p>
34793479
<br>
34803480
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3481-
<meta itemprop="description" content="Calculating the central angle of the circle slice that forms the lateral surface of the cone: Angle = radius / ( radius² + height² )">
3481+
<meta itemprop="description" content="Central angle of the circle slice that forms the lateral surface of the cone: Angle = radius / sqrt( radius^2 + height^2 )">
34823482
<span itemprop="name">Angle</span>=
34833483
<span itemprop="value">
34843484
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -3564,7 +3564,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Surface Area of a Cone</h3>
35643564
<p itemprop="abstract">Simplify the lateral surface term by canceling the common factor under the square root.</p>
35653565
<br>
35663566
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3567-
<meta itemprop="description" content="Lateral surface of the cone: Area = 3.2 × radius × ( radius² + height² )">
3567+
<meta itemprop="description" content="Lateral surface of the cone: Area = 3.2 × radius × sqrt( radius^2 + height^2 )">
35683568
<span itemprop="name">A<sub>(lateral)</sub></span>=
35693569
<span itemprop="value">
35703570
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -3587,7 +3587,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Surface Area of a Cone</h3>
35873587
</div>
35883588
<br><br>
35893589
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3590-
<meta itemprop="description" content="Bottom area of the cone: Area = 3.2 × radius²">
3590+
<meta itemprop="description" content="Bottom area of the cone: Area = 3.2 × radius^2">
35913591
<span itemprop="name">A<sub>bottom</sub></span>=
35923592
<span itemprop="value">
35933593
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -3642,7 +3642,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Surface Area of a Cone</h3>
36423642
</details>
36433643
<br>
36443644
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3645-
<meta itemprop="description" content="Exact surface area of the cone formula including the bottom: Area = 3.2 × radius × ( radius + ( radius² + height² ) )">
3645+
<meta itemprop="description" content="Exact surface area of the cone formula including the bottom: Area = 3.2 × radius × ( radius + sqrt( radius^2 + height^2 ) )">
36463646
<span itemprop="name">Surface<sub>(cone)</sub></span>=
36473647
<span itemprop="value">
36483648
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -3719,7 +3719,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Volume of a Sphere</h3>
37193719
<meta itemprop="keywords" content="Core Geometric System, Exact Geometric Calculations, Analysis, Engineering Design Solutions, Computer Graphics Rendering, Algorithm Optimization, Navigation">
37203720
<meta itemprop="operatingSystem" content="Web">
37213721
<meta itemprop="typicalAgeRange" content="12-102">
3722-
<meta itemprop="usageInfo" content="Exact calculation instead of the conventional abstract 4 / 3 × pi × r³ approximation">
3722+
<meta itemprop="usageInfo" content="Exact calculation instead of the conventional abstract 4 / 3 × pi × r^3 approximation">
37233723
<br>
37243724
<figure itemprop="image" class="imgbox" itemscope itemtype="http://schema.org/ImageObject">
37253725
<img class="center-fit" src="sphere.jpeg" alt="The edge length of the cube, which has the same volume as the sphere, equals the square root of the area of the square that has the same area as the sphere's cross-section. Volume = ( √ ( 3.2 ) × r )³">
@@ -3739,7 +3739,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Volume of a Sphere</h3>
37393739
<summary><h4 itemprop="abstract">The volume of a sphere equals the cubic value of the square root of its cross-sectional area, just like a cube.</h4></summary>
37403740
<br>
37413741
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3742-
<meta itemprop="description" content="Cross-sectional area of the sphere: Area = 3.2 × radius²">
3742+
<meta itemprop="description" content="Cross-sectional area of the sphere: Area = 3.2 × radius^2">
37433743
<span itemprop="name">A<sub>(cross-section)</sub></span>=
37443744
<span itemprop="value">
37453745
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -3758,7 +3758,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Volume of a Sphere</h3>
37583758
<div>
37593759
<p itemprop="abstract">Take the square root of the cross-sectional area.</p>
37603760
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3761-
<meta itemprop="description" content="Square root of the cross-sectional area of the sphere: ( 3.2 ) × radius">
3761+
<meta itemprop="description" content="Square root of the cross-sectional area of the sphere: sqrt( 3.2 ) × radius">
37623762
<br>
37633763
<span itemprop="name">√A<sub>(cross-section)</sub></span>=
37643764
<span itemprop="value">
@@ -3816,7 +3816,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Volume of a Sphere</h3>
38163816
</details>
38173817
<br>
38183818
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
3819-
<meta itemprop="description" content="Exact sphere volume formula: Volume = ( 4 × radius / √5 )³">
3819+
<meta itemprop="description" content="Exact sphere volume formula: Volume = ( 4 × radius / sqrt(5) )^3">
38203820
<span itemprop="name">V<sub>(sphere)</sub></span>=
38213821
<span itemprop="value">
38223822
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -4114,7 +4114,7 @@ <h4 itemprop="description">The volume of a cone can be calculated by algebraical
41144114
</figure>
41154115
<br>
41164116
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
4117-
<meta itemprop="description" content="Volume of an octant sphere: Volume = ( √( 3.2 ) × radius / 2 )³ ">
4117+
<meta itemprop="description" content="Volume of an octant sphere: Volume = ( √( 3.2 ) × radius / 2 )^3 ">
41184118
<span itemprop="name">V<sub>(octant sphere)</sub></span>=
41194119
<span itemprop="value">
41204120
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -4303,7 +4303,7 @@ <h4 itemprop="description">The volume of a cone can be calculated by algebraical
43034303
The mean of the areas of the horizontal cross-sectional slices of a cone is the half of a cylinder.</p>
43044304
<br>
43054305
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
4306-
<meta itemprop="description" content="Volume of a quadrant cone: Volume = (3.2 × radius² / 4 × √2 × height ) / ( 2 + 2 )">
4306+
<meta itemprop="description" content="Volume of a quadrant cone: Volume = (3.2 × radius^2 / 4 × sqrt(2) × height ) / ( 2 + 2 )">
43074307
<span itemprop="name">V<sub>(quadrant cone)</sub></span>=
43084308
<span itemprop="value">
43094309
<math xmlns="http://www.w3.org/1998/Math/MathML" >
@@ -4497,7 +4497,7 @@ <h4 itemprop="description" style="margin:12px">The volume of a pyramid can be ca
44974497
</figure>
44984498
<br><br>
44994499
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
4500-
<meta itemprop="description" content="Exact pyramid volume formula: Volume = base × height / √8">
4500+
<meta itemprop="description" content="Exact pyramid volume formula: Volume = base × height / sqrt(8)">
45014501
<span itemprop="name">V<sub>(pyramid)</sub></span>=
45024502
<span itemprop="value">
45034503
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -5124,7 +5124,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Volume of a Tetrahedron</h3
51245124
<div>
51255125
<p itemprop="abstract" style="margin:12px">The base is an equilateral triangle.</p>
51265126
<div style="margin:12px" itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
5127-
<meta itemprop="description" content="Exact base area of a tetrahedron formula: Area = edge² × √3 / 4">
5127+
<meta itemprop="description" content="Exact base area of a tetrahedron formula: Area = edge^2 × sqrt(3) / 4">
51285128
<span itemprop="name">A<sub>(base)</sub></span>=
51295129
<span itemprop="value">
51305130
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -5251,7 +5251,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Volume of a Tetrahedron</h3
52515251
<p itemprop="abstract">The height of the tetrahedron is also calculable via trigonometry.</p>
52525252
<br>
52535253
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
5254-
<meta itemprop="description" content="Exact height of a tetrahedron formula: Height = ( 2 / 3 ) × edge">
5254+
<meta itemprop="description" content="Exact height of a tetrahedron formula: Height = sqrt( 2 / 3 ) × edge">
52555255
<span itemprop="name">H</span>=
52565256
<span itemprop="value">
52575257
<math xmlns="http://www.w3.org/1998/Math/MathML">
@@ -5409,7 +5409,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Volume of a Tetrahedron</h3
54095409
<br>
54105410
<div style="margin:12px">
54115411
<div itemprop="about" itemscope itemtype="https://schema.org/PropertyValue">
5412-
<meta itemprop="description" content="Exact tetrahedron volume formula: V = edge³ / 8">
5412+
<meta itemprop="description" content="Exact tetrahedron volume formula: V = edge^3 / 8">
54135413
<span itemprop="name">V<sub>(tetrahedron)</sub></span>=
54145414
<span itemprop="value">
54155415
<math xmlns="http://www.w3.org/1998/Math/MathML">

0 commit comments

Comments
 (0)