You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<pitemprop="usageInfo" style="margin:12px">Trigonometric functions with an "Arc" - or simply A - prefix refer to the angle corresponding to a value of that function.</p>
<metaitemprop="description" content="Exact triangle area formula a.k.a. Heron's formula: Area = √( S × ( S - side1 ) × ( S - side2 ) × ( S - side3 ) )">
1641
+
<metaitemprop="description" content="Exact triangle area formula a.k.a. Heron's formula: Area = sqrt( S × ( S - side1 ) × ( S - side2 ) × ( S - side3 ) )">
<metaitemprop="description" content="Calculating the ratio between the squared radius of the circle and the square that represents its area via Pythagorean theorem: radius² = ( side / 4 )² + ( side / 2 )²">
1947
+
<metaitemprop="description" content="The ratio between the squared radius of the circle and an equiareal square: radius^2 = ( side / 4 )^2 + ( side / 2 )^2">
1948
1948
<spanitemprop="name">radius²</span>=
1949
1949
<spanitemprop="value">
1950
1950
<mathxmlns="http://www.w3.org/1998/Math/MathML">
@@ -1979,7 +1979,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle</h3>
<metaitemprop="description" content="The ratio between the radius of the circle and the square that represents its area: radius = side × √5 / 4">
1982
+
<metaitemprop="description" content="The ratio between the radius of the circle and an equiareal square: radius = side × sqrt(5) / 4">
1983
1983
<spanitemprop="name">radius</span>=
1984
1984
<spanitemprop="value">
1985
1985
<mathxmlns="http://www.w3.org/1998/Math/MathML">
@@ -2470,7 +2470,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle</h3>
2470
2470
<pstyle="margin:12px" itemprop="abstract">The area of both the square and the sum of the quadrants equals 16 right triangles with legs of a quarter, and a half of the square's sides, and its hypotenuse equal to the radius of the circle.</p>
<metaitemprop="disambiguatingDescription" content="Circle area based on the true area of a circle - 3.2 × radius² -, instead of the pi=3.14... approximate.">
3155
+
<metaitemprop="disambiguatingDescription" content="Circle area based on the true area of a circle - 3.2 × radius^2 -, instead of the pi=3.14... approximate.">
3156
3156
<metaitemprop="featureList" content="Calculates the area of a circle segment from its height and the radius of its parent circle with an exact formula.">
<imgclass="center-fit" src="circleSegment.png" alt="The area of a circle segment can be calculated by subtracting a triangle from a circle slice. Area = Acos(( r - n ) / r ) × r² - sin( Acos(( r - n ) / r ) × ( r - n ) × r">
3167
+
<imgclass="center-fit" src="circleSegment.png" alt="The area of a circle segment can be calculated by subtracting a triangle from a circle slice. Area = Acos(( r - n ) / r ) × r^2 - sin( Acos(( r - n ) / r ) × ( r - n ) × r">
3168
3168
</figure>
3169
3169
<detailsstyle="margin:12px">
3170
3170
<summary><h4itemprop="description">The area of a circle segment can be calculated by subtracting a triangle from a circle slice.</h4></summary>
@@ -3173,7 +3173,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Area of a Circle Segment</h
3173
3173
<pitemprop="abstract">If the radius of the parent circle is unknown it can be calculated from the chord.</p>
<metaitemprop="disambiguatingDescription" content="Circle area based on the exact 3.2 × radius² formula, instead of the pi=3.14... approximate."><metaitemprop="featureList" content="Calculates circumference from the radius with an exact formula.">
3431
+
<metaitemprop="disambiguatingDescription" content="Circle area based on the exact 3.2 × radius^2 formula, instead of the pi=3.14... approximate."><metaitemprop="featureList" content="Calculates circumference from the radius with an exact formula.">
3432
3432
<metaitemprop="featureList" content="Calculates the surface area of a cone from its height and radius with an exact formula.">
<metaitemprop="description" content="Calculating the central angle of the circle slice that forms the lateral surface of the cone: Angle = radius / √( radius² + height² )">
3481
+
<metaitemprop="description" content="Central angle of the circle slice that forms the lateral surface of the cone: Angle = radius / sqrt( radius^2 + height^2 )">
3482
3482
<spanitemprop="name">Angle</span>=
3483
3483
<spanitemprop="value">
3484
3484
<mathxmlns="http://www.w3.org/1998/Math/MathML">
@@ -3564,7 +3564,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Surface Area of a Cone</h3>
3564
3564
<pitemprop="abstract">Simplify the lateral surface term by canceling the common factor under the square root.</p>
<metaitemprop="description" content="Exact surface area of the cone formula including the bottom: Area = 3.2 × radius × ( radius + √( radius² + height² ) )">
3645
+
<metaitemprop="description" content="Exact surface area of the cone formula including the bottom: Area = 3.2 × radius × ( radius + sqrt( radius^2 + height^2 ) )">
<imgclass="center-fit" src="sphere.jpeg" alt="The edge length of the cube, which has the same volume as the sphere, equals the square root of the area of the square that has the same area as the sphere's cross-section. Volume = ( √ ( 3.2 ) × r )³">
@@ -3739,7 +3739,7 @@ <h3 itemprop="name" style="margin:7px">Calculate the Volume of a Sphere</h3>
3739
3739
<summary><h4itemprop="abstract">The volume of a sphere equals the cubic value of the square root of its cross-sectional area, just like a cube.</h4></summary>
0 commit comments