You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
TVector3 qLCMS = std::pow(-1, (mt() % 2)) * Pair->GetQLCMS(); // introducing randomness to the pair order ([first, second]); important only for 3D because if there are any sudden order/correlation in the tables, it could couse unwanted asymmetries in the final 3d rel. momentum distributions; irrelevant in 1D case because the absolute value of the rel.momentum is taken
TVector3 qLCMS = std::pow(-1, (mt() % 2)) * Pair->GetQLCMS(); // introducing randomness to the pair order ([first, second]); important only for 3D because if there are any sudden order/correlation in the tables, it could couse unwanted asymmetries in the final 3d rel. momentum distributions; irrelevant in 1D case because the absolute value of the rel.momentum is taken
TVector3 qLCMS = std::pow(-1, (mt() % 2)) * Pair->GetQLCMS(); // introducing randomness to the pair order ([first, second]); important only for 3D because if there are any sudden order/correlation in the tables, it could couse unwanted asymmetries in the final 3d rel. momentum distributions; irrelevant in 1D case because the absolute value of the rel.momentum is taken
if (_fill3dCF) { // shuffling is important only for 3D because if there are any sudden order/correlation in the tables, it could couse unwanted asymmetries in the final 3d rel. momentum distributions; irrelevant in 1D case because the absolute value of the rel.momentum is taken
0 commit comments