|
| 1 | +"""timeseries_diff.py |
| 2 | +import sys,os; sys.path.insert(1, os.environ[f"O2DPG"]+"/UTILS/dfextensions"); |
| 3 | +from AliasDataFrame import * |
| 4 | +Utility helpers extension of the pandas DataFrame to support on-demand computed columns (aliases) |
| 5 | +""" |
| 6 | + |
| 7 | +import pandas as pd |
| 8 | +import numpy as np |
| 9 | +import json |
| 10 | +import os |
| 11 | +import uproot |
| 12 | + |
| 13 | +class AliasDataFrame: |
| 14 | + """ |
| 15 | + A wrapper for pandas DataFrame that supports on-demand computed columns (aliases) |
| 16 | + with dependency tracking and persistence. |
| 17 | + Example usage: |
| 18 | + >>> import pandas as pd |
| 19 | + >>> df = pd.DataFrame({"x": [1, 2, 3], "y": [10, 20, 30]}) |
| 20 | + >>> adf = AliasDataFrame(df) |
| 21 | + >>> adf.add_alias("z", "x + y") |
| 22 | + >>> adf.add_alias("w", "z * 2") |
| 23 | + >>> adf.materialize_all() |
| 24 | + >>> print(adf.df) |
| 25 | + You can also save and load the dataframe along with aliases: |
| 26 | + >>> adf.save("mydata") |
| 27 | + >>> adf2 = AliasDataFrame.load("mydata") |
| 28 | + >>> adf2.describe_aliases() |
| 29 | + """ |
| 30 | + |
| 31 | + def __init__(self, df): |
| 32 | + self.df = df |
| 33 | + self.aliases = {} |
| 34 | + |
| 35 | + def add_alias(self, name, expression): |
| 36 | + self.aliases[name] = expression |
| 37 | + |
| 38 | + def _resolve_dependencies(self): |
| 39 | + from collections import defaultdict |
| 40 | + |
| 41 | + dependencies = defaultdict(set) |
| 42 | + for name, expr in self.aliases.items(): |
| 43 | + tokens = expr.replace('(', ' ').replace(')', ' ').replace('*', ' ').replace('+', ' ').replace('-', ' ').replace('/', ' ').split() |
| 44 | + for token in tokens: |
| 45 | + if token in self.aliases: |
| 46 | + dependencies[name].add(token) |
| 47 | + return dependencies |
| 48 | + |
| 49 | + def _topological_sort(self): |
| 50 | + from collections import defaultdict, deque |
| 51 | + |
| 52 | + dependencies = self._resolve_dependencies() |
| 53 | + reverse_deps = defaultdict(set) |
| 54 | + indegree = defaultdict(int) |
| 55 | + |
| 56 | + for alias, deps in dependencies.items(): |
| 57 | + indegree[alias] = len(deps) |
| 58 | + for dep in deps: |
| 59 | + reverse_deps[dep].add(alias) |
| 60 | + |
| 61 | + queue = deque([alias for alias in self.aliases if indegree[alias] == 0]) |
| 62 | + result = [] |
| 63 | + |
| 64 | + while queue: |
| 65 | + node = queue.popleft() |
| 66 | + result.append(node) |
| 67 | + for dependent in reverse_deps[node]: |
| 68 | + indegree[dependent] -= 1 |
| 69 | + if indegree[dependent] == 0: |
| 70 | + queue.append(dependent) |
| 71 | + |
| 72 | + if len(result) != len(self.aliases): |
| 73 | + raise ValueError("Cycle detected in alias dependencies") |
| 74 | + |
| 75 | + return result |
| 76 | + |
| 77 | + def validate_aliases(self): |
| 78 | + broken = [] |
| 79 | + for name, expr in self.aliases.items(): |
| 80 | + try: |
| 81 | + eval(expr, {}, self.df) |
| 82 | + except Exception: |
| 83 | + broken.append(name) |
| 84 | + return broken |
| 85 | + |
| 86 | + def describe_aliases(self): |
| 87 | + print("Aliases:") |
| 88 | + for name, expr in self.aliases.items(): |
| 89 | + print(f" {name}: {expr}") |
| 90 | + |
| 91 | + broken = self.validate_aliases() |
| 92 | + if broken: |
| 93 | + print("\nBroken Aliases:") |
| 94 | + for name in broken: |
| 95 | + print(f" {name}") |
| 96 | + |
| 97 | + print("\nDependencies:") |
| 98 | + deps = self._resolve_dependencies() |
| 99 | + for k, v in deps.items(): |
| 100 | + print(f" {k}: {sorted(v)}") |
| 101 | + |
| 102 | + def materialize_alias0(self, name): |
| 103 | + if name in self.aliases: |
| 104 | + local_env = {col: self.df[col] for col in self.df.columns} |
| 105 | + local_env.update({k: self.df[k] for k in self.aliases if k in self.df}) |
| 106 | + self.df[name] = eval(self.aliases[name], {}, local_env) |
| 107 | + def materialize_alias(self, name, cleanTemporary=False): |
| 108 | + if name not in self.aliases: |
| 109 | + return |
| 110 | + to_materialize = [] |
| 111 | + visited = set() |
| 112 | + def visit(n): |
| 113 | + if n in visited: |
| 114 | + return |
| 115 | + visited.add(n) |
| 116 | + if n in self.aliases: |
| 117 | + expr = self.aliases[n] |
| 118 | + tokens = expr.replace('(', ' ').replace(')', ' ').replace('*', ' ').replace('+', ' ').replace('-', ' ').replace('/', ' ').split() |
| 119 | + for token in tokens: |
| 120 | + visit(token) |
| 121 | + to_materialize.append(n) |
| 122 | + |
| 123 | + visit(name) |
| 124 | + |
| 125 | + # Track which ones were newly created |
| 126 | + original_columns = set(self.df.columns) |
| 127 | + |
| 128 | + for alias in to_materialize: |
| 129 | + local_env = {col: self.df[col] for col in self.df.columns} |
| 130 | + local_env.update({k: self.df[k] for k in self.aliases if k in self.df}) |
| 131 | + try: |
| 132 | + self.df[alias] = eval(self.aliases[alias], {}, local_env) |
| 133 | + except Exception as e: |
| 134 | + print(f"Failed to materialize {alias}: {e}") |
| 135 | + |
| 136 | + if cleanTemporary: |
| 137 | + for alias in to_materialize: |
| 138 | + if alias != name and alias not in original_columns: |
| 139 | + self.df.drop(columns=[alias], inplace=True) |
| 140 | + |
| 141 | + |
| 142 | + def materialize_all(self): |
| 143 | + order = self._topological_sort() |
| 144 | + for name in order: |
| 145 | + try: |
| 146 | + local_env = {col: self.df[col] for col in self.df.columns} |
| 147 | + local_env.update({k: self.df[k] for k in self.df.columns if k in self.aliases}) |
| 148 | + self.df[name] = eval(self.aliases[name], {}, local_env) |
| 149 | + except Exception as e: |
| 150 | + print(f"Failed to materialize {name}: {e}") |
| 151 | + |
| 152 | + def save(self, path_prefix): |
| 153 | + self.df.to_parquet(f"{path_prefix}.parquet", compression="zstd") |
| 154 | + with open(f"{path_prefix}.aliases.json", "w") as f: |
| 155 | + json.dump(self.aliases, f, indent=2) |
| 156 | + |
| 157 | + @staticmethod |
| 158 | + def load(path_prefix): |
| 159 | + df = pd.read_parquet(f"{path_prefix}.parquet") |
| 160 | + with open(f"{path_prefix}.aliases.json") as f: |
| 161 | + aliases = json.load(f) |
| 162 | + adf = AliasDataFrame(df) |
| 163 | + adf.aliases = aliases |
| 164 | + return adf |
| 165 | + |
| 166 | + def export_tree(self, filename, treename="tree", dropAliasColumns=True): |
| 167 | + if dropAliasColumns: |
| 168 | + export_cols = [col for col in self.df.columns if col not in self.aliases] |
| 169 | + else: |
| 170 | + export_cols = list(self.df.columns) |
| 171 | + # Convert float16 columns to float32 for ROOT compatibility |
| 172 | + dtype_casts = {col: np.float32 for col in export_cols if self.df[col].dtype == np.float16} |
| 173 | + export_df = self.df[export_cols].astype(dtype_casts) |
| 174 | + |
| 175 | + with uproot.recreate(filename) as f: |
| 176 | + f[treename] = export_df |
| 177 | + |
| 178 | + import ROOT |
| 179 | + f = ROOT.TFile.Open(filename, "UPDATE") |
| 180 | + tree = f.Get(treename) |
| 181 | + for alias, expr in self.aliases.items(): |
| 182 | + tree.SetAlias(alias, expr) |
| 183 | + tree.Write("", ROOT.TObject.kOverwrite) |
| 184 | + f.Close() |
| 185 | + |
| 186 | + def read_tree(self, filename, treename="tree"): |
| 187 | + with uproot.open(filename) as f: |
| 188 | + df = f[treename].arrays(library="pd") |
| 189 | + adf = AliasDataFrame(df) |
| 190 | + f = ROOT.TFile.Open(filename, "UPDATE") |
| 191 | + try: |
| 192 | + tree = f.Get(treename) |
| 193 | + if not tree: |
| 194 | + raise ValueError(f"Tree '{treename}' not found in file '{filename}'") |
| 195 | + for alias in tree.GetListOfAliases(): |
| 196 | + adf.aliases[alias.GetName()] = alias.GetTitle() |
| 197 | + finally: |
| 198 | + f.Close() |
| 199 | + return adf |
0 commit comments