@@ -977,7 +977,7 @@ int32_t GPUChainTracking::RunTPCClusterizer(bool synchronizeOutput)
977977 GPUTPCNNClusterizer& clustererNNShadow = doGPU ? processorsShadow ()->tpcNNClusterer [lane] : clustererNN;
978978 GPUTPCNNClusterizerHost& nnApplication = nnApplications[lane];
979979
980- int withMC = (doGPU && propagateMCLabels);
980+ // int withMC = (doGPU && propagateMCLabels);
981981
982982 if (nn_settings.nnClusterizerApplyCfDeconvolution ) {
983983 runKernel<GPUTPCCFDeconvolution>({GetGrid (clusterer.mPmemory ->counters .nPositions , lane), {iSector}}, true );
@@ -991,10 +991,10 @@ int32_t GPUChainTracking::RunTPCClusterizer(bool synchronizeOutput)
991991 size_t iSize = CAMath::Min ((uint)clustererNNShadow.mNnClusterizerBatchedMode , (uint)(clusterer.mPmemory ->counters .nClusters - batchStart));
992992
993993 // auto start0 = std::chrono::high_resolution_clock::now();
994- runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::fillInputNNSingleElement>({GetGrid (iSize * clustererNNShadow.mNnClusterizerElementSize , lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType , withMC , batchStart); // Filling the data
994+ runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::fillInputNNSingleElement>({GetGrid (iSize * clustererNNShadow.mNnClusterizerElementSize , lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType , propagateMCLabels , batchStart); // Filling the data
995995
996996 if (clustererNNShadow.mNnClusterizerSetDeconvolutionFlags ) {
997- runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishDeconvolutionFlags>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType , withMC , batchStart); // Filling the regression data
997+ runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishDeconvolutionFlags>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType , propagateMCLabels , batchStart); // Filling the regression data
998998 }
999999
10001000 // NN evaluations
@@ -1044,14 +1044,14 @@ int32_t GPUChainTracking::RunTPCClusterizer(bool synchronizeOutput)
10441044
10451045 // Publishing kernels
10461046 if (nnApplication.mModelClass .getNumOutputNodes ()[0 ][1 ] == 1 ) {
1047- runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::determineClass1Labels>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType , withMC , batchStart); // Assigning class labels
1047+ runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::determineClass1Labels>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType , propagateMCLabels , batchStart); // Assigning class labels
10481048 } else {
1049- runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::determineClass2Labels>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType , withMC , batchStart); // Assigning class labels
1049+ runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::determineClass2Labels>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType , propagateMCLabels , batchStart); // Assigning class labels
10501050 }
10511051 if (!clustererNNShadow.mNnClusterizerUseCfRegression ) {
1052- runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass1Regression>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType , withMC , batchStart); // Publishing class 1 regression results
1052+ runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass1Regression>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType , propagateMCLabels , batchStart); // Publishing class 1 regression results
10531053 if (nnApplication.mModelClass .getNumOutputNodes ()[0 ][1 ] > 1 && nnApplication.mModelReg2 .isInitialized ()) {
1054- runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass2Regression>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType , withMC , batchStart); // Publishing class 2 regression results
1054+ runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass2Regression>({GetGrid (iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType , propagateMCLabels , batchStart); // Publishing class 2 regression results
10551055 }
10561056 }
10571057 }
@@ -1061,7 +1061,7 @@ int32_t GPUChainTracking::RunTPCClusterizer(bool synchronizeOutput)
10611061 runKernel<GPUTPCCFDeconvolution>({GetGrid (clusterer.mPmemory ->counters .nPositions , lane), {iSector}}, true );
10621062 }
10631063 DoDebugAndDump (RecoStep::TPCClusterFinding, GPUChainTrackingDebugFlags::TPCClustererChargeMap, clusterer, &GPUTPCClusterFinder::DumpChargeMap, *mDebugFile , " Split Charges" );
1064- runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::runCfClusterizer>({GetGrid (clusterer.mPmemory ->counters .nClusters , lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType , withMC , 0 ); // Running the CF regression kernel - no batching needed: batchStart = 0
1064+ runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::runCfClusterizer>({GetGrid (clusterer.mPmemory ->counters .nClusters , lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType , propagateMCLabels , 0 ); // Running the CF regression kernel - no batching needed: batchStart = 0
10651065 }
10661066#else
10671067 GPUFatal (" Project not compiled with neural network clusterization. Aborting." );
0 commit comments