Skip to content

Commit eb292d8

Browse files
ChSonnabenddavidrohr
authored andcommitted
Using only propagateMcLabels
1 parent 312ae13 commit eb292d8

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

GPU/GPUTracking/Global/GPUChainTrackingClusterizer.cxx

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -977,7 +977,7 @@ int32_t GPUChainTracking::RunTPCClusterizer(bool synchronizeOutput)
977977
GPUTPCNNClusterizer& clustererNNShadow = doGPU ? processorsShadow()->tpcNNClusterer[lane] : clustererNN;
978978
GPUTPCNNClusterizerHost& nnApplication = nnApplications[lane];
979979

980-
int withMC = (doGPU && propagateMCLabels);
980+
// int withMC = (doGPU && propagateMCLabels);
981981

982982
if (nn_settings.nnClusterizerApplyCfDeconvolution) {
983983
runKernel<GPUTPCCFDeconvolution>({GetGrid(clusterer.mPmemory->counters.nPositions, lane), {iSector}}, true);
@@ -991,10 +991,10 @@ int32_t GPUChainTracking::RunTPCClusterizer(bool synchronizeOutput)
991991
size_t iSize = CAMath::Min((uint)clustererNNShadow.mNnClusterizerBatchedMode, (uint)(clusterer.mPmemory->counters.nClusters - batchStart));
992992

993993
// auto start0 = std::chrono::high_resolution_clock::now();
994-
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::fillInputNNSingleElement>({GetGrid(iSize * clustererNNShadow.mNnClusterizerElementSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType, withMC, batchStart); // Filling the data
994+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::fillInputNNSingleElement>({GetGrid(iSize * clustererNNShadow.mNnClusterizerElementSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType, propagateMCLabels, batchStart); // Filling the data
995995

996996
if (clustererNNShadow.mNnClusterizerSetDeconvolutionFlags) {
997-
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishDeconvolutionFlags>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType, withMC, batchStart); // Filling the regression data
997+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishDeconvolutionFlags>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType, propagateMCLabels, batchStart); // Filling the regression data
998998
}
999999

10001000
// NN evaluations
@@ -1044,14 +1044,14 @@ int32_t GPUChainTracking::RunTPCClusterizer(bool synchronizeOutput)
10441044

10451045
// Publishing kernels
10461046
if (nnApplication.mModelClass.getNumOutputNodes()[0][1] == 1) {
1047-
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::determineClass1Labels>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType, withMC, batchStart); // Assigning class labels
1047+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::determineClass1Labels>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType, propagateMCLabels, batchStart); // Assigning class labels
10481048
} else {
1049-
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::determineClass2Labels>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType, withMC, batchStart); // Assigning class labels
1049+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::determineClass2Labels>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType, propagateMCLabels, batchStart); // Assigning class labels
10501050
}
10511051
if (!clustererNNShadow.mNnClusterizerUseCfRegression) {
1052-
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass1Regression>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType, withMC, batchStart); // Publishing class 1 regression results
1052+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass1Regression>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType, propagateMCLabels, batchStart); // Publishing class 1 regression results
10531053
if (nnApplication.mModelClass.getNumOutputNodes()[0][1] > 1 && nnApplication.mModelReg2.isInitialized()) {
1054-
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass2Regression>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType, withMC, batchStart); // Publishing class 2 regression results
1054+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass2Regression>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceOutputDType, propagateMCLabels, batchStart); // Publishing class 2 regression results
10551055
}
10561056
}
10571057
}
@@ -1061,7 +1061,7 @@ int32_t GPUChainTracking::RunTPCClusterizer(bool synchronizeOutput)
10611061
runKernel<GPUTPCCFDeconvolution>({GetGrid(clusterer.mPmemory->counters.nPositions, lane), {iSector}}, true);
10621062
}
10631063
DoDebugAndDump(RecoStep::TPCClusterFinding, GPUChainTrackingDebugFlags::TPCClustererChargeMap, clusterer, &GPUTPCClusterFinder::DumpChargeMap, *mDebugFile, "Split Charges");
1064-
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::runCfClusterizer>({GetGrid(clusterer.mPmemory->counters.nClusters, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType, withMC, 0); // Running the CF regression kernel - no batching needed: batchStart = 0
1064+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::runCfClusterizer>({GetGrid(clusterer.mPmemory->counters.nClusters, lane), krnlRunRangeNone}, iSector, clustererNNShadow.mNnInferenceInputDType, propagateMCLabels, 0); // Running the CF regression kernel - no batching needed: batchStart = 0
10651065
}
10661066
#else
10671067
GPUFatal("Project not compiled with neural network clusterization. Aborting.");

0 commit comments

Comments
 (0)