@@ -59,17 +59,17 @@ template <>
5959GPUdii () void GPUTPCNNClusterizer::Thread<GPUTPCNNClusterizer::determineClass2Labels>(int32_t nBlocks, int32_t nThreads, int32_t iBlock, int32_t iThread, GPUSharedMemory& smem, processorType& clusterer, int8_t dtype, int8_t onlyMC, uint batchStart)
6060{
6161 uint glo_idx = get_global_id (0 );
62- uint elem_iterator = glo_idx * (clusterer.nnInternals )->model_class . getNumOutputNodes ()[ 0 ][ 1 ] ;
62+ uint elem_iterator = glo_idx * (clusterer.nnInternals )->nnClusterizerModelClassNumOutputNodes ;
6363 float current_max_prob = 0 .f ; // If the neural network doesn't contain the softmax as a last layer, the outputs can range in [-infty, infty]
6464 uint class_label = 0 ;
65- for (float pIdx = elem_iterator; pIdx < elem_iterator + (clusterer.nnInternals )->model_class . getNumOutputNodes ()[ 0 ][ 1 ] ; pIdx++) {
65+ for (float pIdx = elem_iterator; pIdx < elem_iterator + (clusterer.nnInternals )->nnClusterizerModelClassNumOutputNodes ; pIdx++) {
6666 if (pIdx == elem_iterator) {
6767 current_max_prob = (clusterer.nnInternals )->modelProbabilities [pIdx];
6868 } else {
6969 class_label = ((clusterer.nnInternals )->modelProbabilities [pIdx] > current_max_prob ? pIdx : class_label);
7070 }
7171 }
72- // uint class_label = std::distance(elem_iterator, std::max_element(elem_iterator, elem_iterator + (clusterer.nnInternals)->model_class.getNumOutputNodes()[0][1] )); // Multiple outputs of the class network are the probabilities for each class. The highest one "wins"
72+ // uint class_label = std::distance(elem_iterator, std::max_element(elem_iterator, elem_iterator + (clusterer.nnInternals)->nnClusterizerModelClassNumOutputNodes )); // Multiple outputs of the class network are the probabilities for each class. The highest one "wins"
7373 (clusterer.nnInternals )->outputDataClass [glo_idx + batchStart] = class_label;
7474}
7575
@@ -216,9 +216,9 @@ GPUd() void GPUTPCNNClusterizer::publishClustersReg1(uint glo_idx, GPUSharedMemo
216216 MCLabelAccumulator* labelAcc = CPU_PTR (&labelAccElem);
217217 tpc::ClusterNative* clusterOut = (onlyMC) ? nullptr : clusterer.mPclusterByRow ;
218218 uint full_glo_idx = glo_idx + batchStart;
219- int model_output_index = glo_idx * (clusterer.nnInternals )->model_reg_1 . getNumOutputNodes ()[ 0 ][ 1 ] ;
219+ int model_output_index = glo_idx * (clusterer.nnInternals )->nnClusterizerModelReg1NumOutputNodes ;
220220
221- // LOG(info) << glo_idx << " -- " << model_output_index << " / " << (clusterer.nnInternals)->outputDataReg1.size() << " / " << (clusterer.nnInternals)->model_reg_1.getNumOutputNodes()[0][1] << " -- " << (clusterer.nnInternals)->peakPositions.size() << " -- " << (clusterer.nnInternals)->centralCharges.size();
221+ // LOG(info) << glo_idx << " -- " << model_output_index << " / " << (clusterer.nnInternals)->outputDataReg1.size() << " / " << (clusterer.nnInternals)->nnClusterizerModelReg1NumOutputNodes << " -- " << (clusterer.nnInternals)->peakPositions.size() << " -- " << (clusterer.nnInternals)->centralCharges.size();
222222
223223 if ((clusterer.nnInternals )->outputDataClass [full_glo_idx] == 1 ) {
224224
@@ -288,9 +288,9 @@ GPUd() void GPUTPCNNClusterizer::publishClustersReg2(uint glo_idx, GPUSharedMemo
288288 MCLabelAccumulator* labelAcc = CPU_PTR (&labelAccElem);
289289 tpc::ClusterNative* clusterOut = (onlyMC) ? nullptr : clusterer.mPclusterByRow ;
290290 uint full_glo_idx = glo_idx + batchStart;
291- int model_output_index = glo_idx * (clusterer.nnInternals )->model_reg_2 . getNumOutputNodes ()[ 0 ][ 1 ] ;
291+ int model_output_index = glo_idx * (clusterer.nnInternals )->nnClusterizerModelReg2NumOutputNodes ;
292292
293- // LOG(info) << glo_idx << " -- " << model_output_index << " / " << (clusterer.nnInternals)->outputDataReg1.size() << " / " << (clusterer.nnInternals)->model_reg_1.getNumOutputNodes()[0][1] << " -- " << (clusterer.nnInternals)->peakPositions.size() << " -- " << (clusterer.nnInternals)->centralCharges.size();
293+ // LOG(info) << glo_idx << " -- " << model_output_index << " / " << (clusterer.nnInternals)->outputDataReg1.size() << " / " << (clusterer.nnInternals)->nnClusterizerModelReg2NumOutputNodes << " -- " << (clusterer.nnInternals)->peakPositions.size() << " -- " << (clusterer.nnInternals)->centralCharges.size();
294294
295295 if ((clusterer.nnInternals )->outputDataClass [full_glo_idx] > 0 ) {
296296
@@ -323,9 +323,6 @@ GPUd() void GPUTPCNNClusterizer::publishClustersReg2(uint glo_idx, GPUSharedMemo
323323 tpc::ClusterNative myCluster;
324324 bool rejectCluster = !pc.toNative ((clusterer.nnInternals )->peakPositions [glo_idx], (clusterer.nnInternals )->centralCharges [glo_idx], myCluster, clusterer.Param ());
325325 if (rejectCluster) {
326- if ((clusterer.nnInternals )->nnClusterizerVerbosity < 2 ) {
327- LOG (warning) << " [NN, CF] Cluster rejected!" ;
328- }
329326 if (clusterer.mPclusterPosInRow ) {
330327 clusterer.mPclusterPosInRow [full_glo_idx] = clusterer.mNMaxClusterPerRow ;
331328 }
@@ -354,9 +351,6 @@ GPUd() void GPUTPCNNClusterizer::publishClustersReg2(uint glo_idx, GPUSharedMemo
354351
355352 rejectCluster = !pc.toNative ((clusterer.nnInternals )->peakPositions [glo_idx], (clusterer.nnInternals )->centralCharges [glo_idx], myCluster, clusterer.Param ());
356353 if (rejectCluster) {
357- if ((clusterer.nnInternals )->nnClusterizerVerbosity < 2 ) {
358- LOG (warning) << " [NN, CF] Cluster rejected!" ;
359- }
360354 if (clusterer.mPclusterPosInRow ) {
361355 clusterer.mPclusterPosInRow [full_glo_idx] = clusterer.mNMaxClusterPerRow ;
362356 }
0 commit comments