You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
AddOption(nnInferenceAllocateDevMem, int, 0, "", 0, "(bool, default = 0), if the device memory should be allocated for inference")
230
230
AddOption(nnInferenceDtype, std::string, "fp32", "", 0, "(std::string) Specify the datatype for which inference is performed (fp32: default, fp16)") // fp32 or fp16
231
-
AddOption(nnInferenceThreadsPerNN, int, 0, "", 0, "Number of threads used to evaluate one neural network")
231
+
AddOption(nnInferenceIntraOpNumThreads, int, 1, "", 0, "Number of threads used to evaluate one neural network (ONNX: SetIntraOpNumThreads). 0 = auto-detect, can lead to problems on SLURM systems.")
232
+
AddOption(nnInferenceInterOpNumThreads, int, 1, "", 0, "Number of threads used to evaluate one neural network (ONNX: SetInterOpNumThreads). 0 = auto-detect, can lead to problems on SLURM systems.")
232
233
AddOption(nnInferenceEnableOrtOptimization, unsignedint, 99, "", 0, "Enables graph optimizations in ONNX Runtime. Can be [0, 1, 2, 99] -> see https://github.com/microsoft/onnxruntime/blob/3f71d637a83dc3540753a8bb06740f67e926dc13/include/onnxruntime/core/session/onnxruntime_c_api.h#L347")
233
234
AddOption(nnInferenceOrtProfiling, int, 0, "", 0, "Enables profiling of model execution in ONNX Runtime")
234
235
AddOption(nnInferenceOrtProfilingPath, std::string, ".", "", 0, "If nnInferenceOrtProfiling is set, the path to store the profiling data")
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass1Regression>({GetGrid(iSize, lane, GPUReconstruction::krnlDeviceType::CPU), {iSector}}, processors(), iSector, clustererNN.nnClusterizerDtype, 0, batchStart); // Running the NN for regression class 1
943
+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass1Regression>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNN.nnClusterizerDtype, 0, batchStart); // Running the NN for regression class 1
944
944
if (nnApplication.model_class.getNumOutputNodes()[0][1] > 1 && nnApplication.reg_model_paths.size() > 1) {
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass2Regression>({GetGrid(iSize, lane, GPUReconstruction::krnlDeviceType::CPU), {iSector}}, processors(), iSector, clustererNN.nnClusterizerDtype, 0, batchStart); // Running the NN for regression class 2
946
+
runKernel<GPUTPCNNClusterizerKernels, GPUTPCNNClusterizerKernels::publishClass2Regression>({GetGrid(iSize, lane), krnlRunRangeNone}, iSector, clustererNN.nnClusterizerDtype, 0, batchStart); // Running the NN for regression class 2
947
947
}
948
948
}
949
949
auto stop1 = std::chrono::high_resolution_clock::now();
0 commit comments